

VISUAL BASIC

Contents

Contents

Ch : 1 Introduction to VB

1 Features of Visual Basic

2 Concept of event-driven programming

3 Difference between Design Time and Run Time

4 List the file types that can be included in the Project

Ch : 2 VB Fundamentals

1 Data Types

2 Variables and Scope of Variables

3 VB Constants

4 Statements

5 Loops

6 Operators

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/Index.htm (1 of 6) [6/26/02 12:32:37 PM]

Contents

Ch : 3 Working with Forms

1 Common Properties

2 Common Methods

3 Common Events

4 Form Methods

5 Form Events

6 Form Properties

Ch : 4 Working with Controls

1 Introduction to Controls

2 Label and Text Box

3 Picture Box and Image

4 Command Button

5 Check Box , Option Button and Frame

6 Combo Box and List Box

7 Scroll Bars

8 Timer

9 Drive , Die and File List Box

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/Index.htm (2 of 6) [6/26/02 12:32:37 PM]

Contents

10 Shape and Line

Ch : 5 Dialogue Boxes and Menu Editor

1 Introduction to Dialogue Boxes

2 Predefined Dialogue

3 Custom dialogue boxes

4 Standard dialogue boxes

5 Menu Editor

6 Pop up menu

7 MDI Application

Ch : 5 Functions

1 Date

2 Math

3 String

4 Information

5 Collection

6 Conversion

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/Index.htm (3 of 6) [6/26/02 12:32:37 PM]

Contents

7 Graphics with VB

Ch : 7 ADO, DAO, RDO

1 ADO Collection

2 ADO Example

3 DAO Collection

4 DAO Example

Ch : 8 Error Handling

1 Type of Errors

2 Design Time Error

3 Compile Time Error

4 Run Time Error

5 Err Object

6 Error Trapping Options in VB

Ch : 9 Advance Active X controls

1 Image List

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/Index.htm (4 of 6) [6/26/02 12:32:37 PM]

Contents

2 Tree View

3 List View

4 Flex Grid

5 Rich Text Box

6 Status Bar

7 Progress Bar

8 Tool Bar

9 Slider Control

10 Date Picker

11 Tabbed Control

12 Masked Edit Control

Ch : 10 File Handling

1 Accessing File - An Overview

2 Random Access Files

3 Sequential Access Files

Ch : 11 Report Designer and Graphs

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/Index.htm (5 of 6) [6/26/02 12:32:37 PM]

Contents

1 Data Environment

2 Data Report

3 Graphs

Ch : 12 Win API, OLE

1 Win API - An Overview

2 OLE

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/Index.htm (6 of 6) [6/26/02 12:32:37 PM]

0100. Index

CHAPTER – 1 Introduction to VB
§ Features of Visual Basic

§ Concept of event-driven programming

§ Difference between design time and run time

§ List the file types that can be include in a project

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/01.%20Introduction%20to%20VB\0100.%20Index.htm [6/26/02 12:36:11 PM]

0200. Index

CHAPTER – 2 VB Fundamentals
§ Data Types

§ Variables and Scope of Variables

§ VB Constants

§ Statements

§ Loops

§ Operators

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/02.%20VB%20Fundamentals\0200.%20Index.htm [6/26/02 12:36:12 PM]

0300. Index

CHAPTER – 3 Working with Forms
§ Common Properties

§ Common Methods

§ Common Events

§ Form Methods

§ Form Events

§ Form Properties

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/03.%20Working%20with%20Forms\0300.%20Index.htm [6/26/02 12:36:14 PM]

0400. Index

CHAPTER – 4 Working with Controls
§ Introduction to controls

§ Lable and Text Box

§ Picture Box and Image

§ Command Button

§ Check Box, Option Button and Frame

§ Combo Box and List Box

§ Scroll Bars

§ Timer

§ Drive, Dir and File List Box

§ Shape and Line

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/04.%20Working%20with%20Controls\0400.%20Index.htm [6/26/02 12:36:16 PM]

0500. Index

CHAPTER – 5 Dialog Boxes and Menu Editor
§ Introduction to Dialog Boxes

§ Predefined Dialog Box

§ Custom dialog boxes

§ Standard dialog boxes

§ Menu Editor

§ Pop up menu

§ MDI Application

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0...log%20Boxes%20and%20Menu%20Editor\0500.%20Index.htm [6/26/02 12:36:18 PM]

0600. Index

CHAPTER – 6 Functions
§ Date

§ Math

§ String

§ Information

§ Collection

§ Conversion

§ Graphics with VB

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/06.%20Functions\0600.%20Index.htm [6/26/02 12:36:19 PM]

0700. Index

CHAPTER – 7 Data Controls
§ ADO Collection

§ ADO Example

§ DAO Collection

§ DAO Example

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/07.%20ADO,%20DAO%20and%20RDO\0700.%20Index.htm [6/26/02 12:36:21 PM]

0800. Index

CHAPTER – 8 Error Handling
§ Types of Errors

§ Design Time Error

§ Compile Time Error

§ Run Time Error

§ Err Object

§ Error Trapping Options in VB

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/08....Validation%20and%20Error%20Handling\0800.%20Index.htm [6/26/02 12:36:23 PM]

0900. Index

CHAPTER – 9 ActiveX
§ Image List

§ Tree View

§ List View

§ Flex Grid

§ Rich Text Box

§ Status Bar

§ Progress Bar

§ Tool Bar

§ Slider Control

§ Date Picker

§ Tabbed Control

§ Masked Edit Control

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorial...dvance%20Active%20X%20Controls\0900.%20Index.htm (1 of 2) [6/26/02 12:36:24 PM]

0900. Index

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorial...dvance%20Active%20X%20Controls\0900.%20Index.htm (2 of 2) [6/26/02 12:36:24 PM]

1000. Index

CHAPTER – 10 File Handling
§ Accessing File - An Overview

§ Random Access Files

§ Sequential Access Files

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/10.%20SQL%20and%20File%20Handling\1000.%20Index.htm [6/26/02 12:36:26 PM]

1100. Index

CHAPTER – 11 Reports and Graphs
§ Data Environment

§ Data Report

§ Graphs

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1...0Report%20Designer%20and%20Graphs\1100.%20Index.htm [6/26/02 12:36:28 PM]

1200. Index

CHAPTER – 12 WIN API, OLE
§ Win API - An Overview

§ OLE

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/12...E,%20DHTML,%20Script,%20Multimedia\1200.%20Index.htm [6/26/02 12:36:29 PM]

0101. Features of Visual Basic

Features of Visual Basic
Data Access Features

ActiveX technologies

Internet capabilities

Rapid Application Development (RAD)

Support for multilingual applications

Interactive debugging

Editions of Visual Basic
Learning Edition

Professional Edition

Enterprise Edition

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0101.%20Features%20of%20Visual%20Basic.htm [6/26/02 12:43:47 PM]

0102. Concept of event-driven programming

Concept of event-driven programming
Visual Basic is event-driven, meaning code remains idle
until called upon to respond to some event (button pressing,
menu selection...). An event processor governs Visual
Basic. Nothing happens until an event is detected. Once an
event is detected, the code corresponding to that event
(event procedure) is executed. Program control is then
returned to the event processor.

Procedural Programming vs. Event-Driven
Programming
Event-driven programming can best be understood by contrasting it to
procedural programming.

• Applications written in procedural languages execute by
proceeding logically through the program code, one line at a time.
Logic flow can be temporarily transferred to other parts of the
program through the GoTo, GoSub, and Call statements, directing
the program from beginning to end.

• In contrast, program statements in an event-driven application
execute only when a specific event calls a section of code assigned
to that event. Events can be triggered by keyboard input, mouse
actions, the operating system, or code in the application. For
example, consider what happens when the user clicks a command
button named Command1 on a form. The mouse click is an event.
When the Click event occurs, Visual Basic executes the code in the
Sub procedure named Command1_Click. When the code has
finished running, Visual Basic waits for the next event.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorial...%20Concept%20of%20event-driven%20programming.htm (1 of 2) [6/26/02 12:43:49 PM]

0102. Concept of event-driven programming

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorial...%20Concept%20of%20event-driven%20programming.htm (2 of 2) [6/26/02 12:43:49 PM]

0103. Difference between design time and run time

Difference between design time and run
time

As with any programming language, using Visual Basic
requires an understanding of some common terminology.
The following table lists some key terms used in Visual
Basic.

Term Definition

Design time Any time an application is being developed in the Visual
Basic environment.

Run time Any time an application is running. At run time, the
programmer interacts with the application as the user
would.

Forms Windows that can be customized to serve as the
interface for an application or as dialog boxes used to
gather information from the user.

Controls Graphic representations of objects, such as buttons, list
boxes, and edit boxes, that user manipulate to provide
information to the application.

Objects A general term used to describe all the forms and
controls that make up a program.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutoria...0between%20design%20time%20and%20run%20time.htm (1 of 2) [6/26/02 12:43:50 PM]

0103. Difference between design time and run time

file:///D|/JigneshDhol/VisualBasic/VB%20Tutoria...0between%20design%20time%20and%20run%20time.htm (2 of 2) [6/26/02 12:43:50 PM]

0104. List the file types that can be included in a project

List the file types that can be included in a
project

File type Extension Description

Form files .frm

.frx

hese files contain the form, the objects on
the form, and code that runs when an
event occurs on that form.

Visual Basic
standard
modules

.bas These modules contain Sub and Function
procedures that can be called by any form
or object on a form. Standard modules are
optional.

ActiveX
Controls

.ocx ActiveX controls are available from
Microsoft and third party vendors. They
are added using the Components
command on the Project menu. Once
added to a project, ActiveX controls
appear in the Toolbox.

Visual Basic
class modules

.cls These modules contain the class
definition, methods, and properties. Class
modules are optional and are not covered
in this course.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorial...hat%20can%20be%20included%20in%20a%20project.htm (1 of 3) [6/26/02 12:43:52 PM]

0104. List the file types that can be included in a project

Resource files .res These files contain binary information
used by the application. Resource files
are typically used when creating programs
for multiple languages.

User Controls .ctl

.ctx

These files contain source code and
binary information for User Controls.
These files are compiled into ActiveX
controls (.ocx files).

User
Documents

.dob

.dox

These files contain base form and binary
information for creating ActiveX
documents.

ActiveX
Designers

.dsr These files contain information about
designers that are used in the project. For
example, you can create a Data
Environment for run-time data access.

List the file types used in Graphics

BMP Bitmap

GIF Graphics Interchange Format

JPG Joint Photographic Experts Group

DIB Device Independent Bitmap

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorial...hat%20can%20be%20included%20in%20a%20project.htm (2 of 3) [6/26/02 12:43:52 PM]

0104. List the file types that can be included in a project

WMF Windows Metafile

EMF Enhanced Metafile

CUR Cursors

ICO Icons

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorial...hat%20can%20be%20included%20in%20a%20project.htm (3 of 3) [6/26/02 12:43:52 PM]

0205. Data Types

Data Types
Basically Data Types can be divided into two category as

Native Aggrigate

Boolean

Byte

Currency

Date

Double

Integer

Long

Object

Single

String

variant

Array (Static, Dynamic)

UDT (User defined Type)

Collection

Native Data Type

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0205.%20Data%20Types.htm (1 of 19) [6/26/02 12:44:41 PM]

0205. Data Types

VAR. TYPE BYTES SUFFIX RANGE

Boolean 2 True, False

Byte 1 0 to 255

Currency 8 @ -9.5808 E15 to 9.5807 E15

Date 8 #&ldots;..# 1 jan 100 to 31 dec 9999

Double 8 # -1.012345678901234E308 to
1.79E308

Integer 2 % -32,768 to 32,767

Long 4 & -2E9 to 2E9

Object 4 N/A

Single 4 ! -3.123456E38 to 3.40E38

String N/A $ A variable length string can hold
2 GB. A Fixed length string can
contain 64K character.

Variant

The Integer Data Type

Integer variables can hold integer values (whole numbers) included

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0205.%20Data%20Types.htm (2 of 19) [6/26/02 12:44:41 PM]

0205. Data Types

in the range from -32,768 through 32,767. These variables are also
known as 16-bit integers because each value of this type takes 2
bytes of memory.

NOTE

You can indirectly specify that an undeclared variable is of
type Integer by appending a % symbol to its name. However,
this feature is supported by Visual Basic 6 only for
compatibility with older Visual Basic and QuickBasic
programs. All new applications should exclusively use
variables declared in an explicit way. The same suggestion
of course applies to other data types, including Long (&),
Single(!), Double(#), Currency(@), and String($).

All the integer constants in your code are implicitly of type Integer,
unless their value is outside the range for this data type, in which
case they are stored as Long.

The Long Data Type

Long variables can hold integer values in the range from -
2,147,483,648 through 2,147,483,647 and are also known as 32-bit
integers because each value takes 4 bytes of memory. As I
mentioned previously, you're encouraged to use Longs in your
applications as the preferred data type for integer values. Long
variables are as fast as Integer variables, and in most cases they
prevent the program from breaking when dealing with numbers
larger than expected. One example is when you have to process

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0205.%20Data%20Types.htm (3 of 19) [6/26/02 12:44:41 PM]

0205. Data Types

strings longer than 32,767 characters: In this case, you must use a
Long index instead of an Integer variable. Watch out for this quirk
when you convert code written for older Visual Basic versions.

CAUTION

For historical reasons, Visual Basic lets you enforce a
particular data type as the default data type using the
Deftype directive, so you might be tempted to use the
DefLng A-Z directive at the beginning of each module to
ensure that all undeclared variables are Long. My advice is:
don't do that! Using Deftype directives instead of carefully
declaring all your variables is a dangerous practice.
Moreover, Deftype directives impair code reusability in that
you can't safely cut and paste code from one module to
another without also copying the directive.

The Boolean Data Type

Boolean variables are nothing but Integers that can hold only values
0 and -1, which stand for False and True, respectively. When you use
a Boolean, you are actually wasting 15 out of 16 bits in the variable,
because this information could be easily held in one single bit. That
said, I suggest you use Boolean instead of Integer variables
whenever it makes sense to do so because this increases the
readability of your code. On a few occasions, I have also
experienced a slight improvement in performance, but usually it's
negligible and shouldn't be a decisive factor.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0205.%20Data%20Types.htm (4 of 19) [6/26/02 12:44:41 PM]

0205. Data Types

The Byte Data Type

Byte variables can hold an integer numeric value in the range 0
through 255. They take only one byte (8 bits) each and are therefore
the smallest data type allowed by Visual Basic. Visual Basic 4
introduced the Byte data type to ease the porting of 16-bit
applications to Windows 95 and Microsoft Windows NT. Specifically,
while Visual Basic 4 for the 32-bit platform and later versions are
source-code compatible with Visual Basic 3 and Visual Basic 4 for
the 16-bit platform applications, they store their strings in Unicode
instead of ANSI format. This difference raised a problem with strings
passed to API functions because Visual Basic 3 programmers used
to store binary data in strings for passing it to the operating system,
but the Unicode-to-ANSI automatic conversion performed by Visual
Basic makes it impossible to port this code to 32-bit without any
significant change.

The Single Data Type

Single variables can hold decimal values in the range from -
3.402823E38 through -1.401298E-45 for negative values and
1.401298E-45 through 3.402823E38 for positive values. They take 4
bytes and are the simplest (and least precise) of the floating point
data types allowed by Visual Basic.

Contrary to what many programmers believe, Single variables aren't
faster than Double variables, at least on the majority of Windows
machines. The reason is that on most systems, all floating point
operations are performed by the math coprocessor, and the time
spent doing the calculations is independent of the original format of
the number. This means that in most cases you should go with
Double values because they offer a better precision, a wider range,

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0205.%20Data%20Types.htm (5 of 19) [6/26/02 12:44:41 PM]

0205. Data Types

fewer overflow problems, and no performance hit.

The Single data type is a good choice when you're dealing with large
arrays of floating point values, and you can be satisfied with its
precision and valid range. Another good occasion to use the Single
data type is when you're doing intensive graphical work on your
forms and in PictureBox controls. In fact, all the properties and
methods that deal with coordinates-including CurrentX/Y, Line,
Circle, ScaleWidth, ScaleHeight, and so on-use values of type Single.
So you might save Visual Basic some conversion work if you store
your coordinate pairs in Single variables.

The Double Data Type

Double variables can hold a floating point value in the range -
1.79769313486232E308 through -4.94065645841247E-324 for negative
values and 4.9406564581247E-324 through 1.79769313486232E308
for positive values. They take 8 bytes and in most cases are the
preferable choice when you're dealing with decimal values. A few
built-in Visual Basic functions return Double values. For example,
the Val function always returns a Double value, even if the string
argument doesn't include a decimal point. For this reason, you might
want to store the result from such functions in a Double variable,
which saves Visual Basic an additional conversion at run time.

The String Data Type

Visual Basic manages two different types of strings: conventional
variable-length strings and fixed-length strings. You declare them in
different ways:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0205.%20Data%20Types.htm (6 of 19) [6/26/02 12:44:41 PM]

0205. Data Types

Dim VarLenStr As String

Dim FixedLenStr As String * 40

The first, obvious difference is that in any given moment a variable-
length string takes only the memory that it needs for its characters
(actually, it takes 10 additional bytes for holding other information
about the string, including its length), whereas a fixed-length string
always takes a fixed amount of memory (80 bytes, in the preceding
example).

String constants are enclosed within quotes, and you can embed
quotes within the string by doubling them:

Print "<My Name Is ""Tarzan"">" ' displays <My Name Is "Tarzan">

Visual Basic additionally defines a number of intrinsic string
constants, such as vbTab (the Tab character) or vbCrLf (the carriage
return-line feed pair). Using these constants usually improves the
readability of your code as well as its performance because you
don't have to use a Chr function to create the strings.

The Currency Data Type

Currency variables can hold decimal values in a fixed-point format,
in the range from -922,337,203,685,477.5808 through
922,337,203,685,477.5807. They differ from floating-point variables,
such as Single and Double, in that they always include four decimal
digits. You can think of a currency value as a big integer that's 8
bytes long and whose value is automatically scaled by a factor of
10,000 when it's assigned to the variable and when it's read back and
displayed to the user.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0205.%20Data%20Types.htm (7 of 19) [6/26/02 12:44:41 PM]

0205. Data Types

The Date Data Type

Date variables can hold any date between January 1, 100, through
December 31, 9999, as well as any time value. They take 8 bytes,
exactly like Double variables. This isn't a casual resemblance
because internally these date/time values are stored as floating-point
numbers, in which the integer part stores the date information and
the decimal part stores the time information. (For example, 0.5
means 12 A.M., 0.75 means 6 P.M., and so on.) Once you know how
Date variables store their values, you can perform many meaningful
math operations on them. For example, you can truncate date or
time information using the Int function, as follows:

MyVar = Now ' MyVar is a Date variable.

DateVar = Int(MyVar) ' Extract date information.

TimeVar = MyVar - Int(MyVar) ' Extract time information.

You can also add and subtract dates, as you would do with
numbers:

MyVar = MyVar + 7 ' Advance one week.

MyVar = MyVar - 365 ' Go back one (nonleap) year.

VBA provides many functions for dealing with date and time
information in more advanced ways, which I'll cover in Chapter 5.
You can also define a Date constant using the format #mm/dd/yyyy#,
with or without a time portion:

MyVar = #9/5/1996 12.20 am#

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0205.%20Data%20Types.htm (8 of 19) [6/26/02 12:44:41 PM]

0205. Data Types

The Object Data Type

Visual Basic uses object variables to store reference objects. Note
that here we are talking about storing a reference to an object, not
storing an object. The difference is subtle but important, and I'll talk
about it at length in Chapter 6. There are several types of object
variables, but they can be grouped in two broad categories: generic
object variables and specific object variables. Here are a few
examples:

' Examples of generic object variables

Dim frm As Form ' A reference to any form

Dim midfrm As MDIForm ' A reference to any MDI form

Dim ctrl As Control ' A reference to any control

Dim obj As Object ' A reference to any object

' Examples of specific object variables

Dim inv As frmInvoice ' A reference to a specific type of form

Dim txtSalary As TextBox ' A reference to a specific type of control

Dim cust As CCustomer ' A reference to an object defined by a

 ' class module in the current project

Dim wrk As Excel.Worksheet ' A reference to an external object

The most evident difference when dealing with object variables (as

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0205.%20Data%20Types.htm (9 of 19) [6/26/02 12:44:41 PM]

0205. Data Types

opposed to regular variables) is that you assign object references to
them using the Set keyword, as in the following code:

Set frm = Form1

Set txtSalary = Text1

CAUTION

One of the most common errors that programmers make
when dealing with object variables is omitting the Set
command during assignments. What happens if you omit
this keyword depends on the object involved. If it doesn't
support a default property, Visual Basic raises a compile-
time error ("Invalid use of property"); otherwise, the
assignment succeeds, but the result won't be the one you
expect:

frm = Form1 ' A missing Set raises a compiler error.

txtSalary = Text1 ' A missing Set assigns Text1's Text
property to txtSalary's Text property.

Object variables can also be cleared so that they don't point to any
particular object anymore. You do this by assigning them the special
Nothing value:

Set txtSalary = Nothing

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0205.%20Data%20Types.htm (10 of 19) [6/26/02 12:44:41 PM]

0205. Data Types

The Variant Data Type

Automatic data coercion is always dangerous because you might
not get the results that you expect. For example, if you use the +
operator on two Variants that hold numeric values, Visual Basic
interprets the + as the addition operator. If both values are strings,
Visual Basic interprets the + as the append operator. When one data
type is a string and the other is a number, Visual Basic tries to
convert the string to a number so that an addition can be performed;
if this isn't possible, a "Type Mismatch" error is raised. If you want to
be sure to execute an append operation regardless of the data types
involved, use the & operator. Finally note that you can't store fixed-
length strings in Variant variables.

Aggregate Data Types

The native data types we have examined so far have been simple.
While useful in their own right, they can also serve as building
blocks to form aggregate data types. In this section, we examine this
concept more closely.

User-Defined Types

A user-defined type (UDT) is a compound data structure that holds
several variables of simpler data types. Before you can use a UDT
variable, you must first define its structure, using a Type directive in
the declaration section of a module:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0205.%20Data%20Types.htm (11 of 19) [6/26/02 12:44:41 PM]

0205. Data Types

Private Type EmployeeUDT

 Name As String

 DepartmentID As Long

 Salary As Currency

End Type

Dim Emp As EmployeeUDT

Emp.Name = "Roscoe Powell"

Emp.DepartmentID = 123

Type structures can also contain substructures, for example:

Private Type LocationUDT

 Address As String

 City As String

 Zip As String

 State As String * 2

End Type

Private Type EmployeeUDT

 Name As String

 DepartmentID As Long

 Salary As Currency

 Location As LocationUDT

End Type

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0205.%20Data%20Types.htm (12 of 19) [6/26/02 12:44:41 PM]

0205. Data Types

When you access such nested structures, you can resort to the
With&ldots;End With clause to produce more readable code:

With Emp

Print .Name

Print .Salary

With .Location

Print .Address

Print .City & " " & .Zip & " " & .State

End With

End With

Visual Basic lets you copy one UDT to another UDT with the same
structure using a regular assignment, as in the following code:

Dim emp1 As EmployeeUDT, emp2 As EmployeeUDT

...

emp2 = emp1

Arrays

Arrays are ordered sets of homogeneous items. Visual Basic

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0205.%20Data%20Types.htm (13 of 19) [6/26/02 12:44:41 PM]

0205. Data Types

supports arrays made up of elementary data types. You can build
one-dimensional arrays, two-dimensional arrays, and so on, up to 60
dimensions. (I never met a programmer who bumped into this limit in
a real application, though.)

Static and dynamic arrays

Basically, you can create either static or dynamic arrays. Static
arrays must include a fixed number of items, and this number must
be known at compile time so that the compiler can set aside the
necessary amount of memory. You create a static array using a Dim
statement with a constant argument:

' This is a static array.

Dim Names(100) As String

Visual Basic starts indexing the array with 0. Therefore, the
preceding array actually holds 101 items.

Most programs don't use static arrays because programmers rarely
know at compile time how many items you need and also because
static arrays can't be resized during execution. Both these issues are
solved by dynamic arrays. You declare and create dynamic arrays in
two distinct steps. In general, you declare the array to account for its
visibility (for example, at the beginning of a module if you want to
make it visible by all the procedures of the module) using a Dim
command with an empty pair of brackets. Then you create the array
when you actually need it, using a ReDim statement:

' An array defined in a BAS module (with Private scope)

Dim Customers() As String

...

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0205.%20Data%20Types.htm (14 of 19) [6/26/02 12:44:41 PM]

0205. Data Types

Sub Main()

 ' Here you create the array.

 ReDim Customer(1000) As String

End Sub

If you're creating an array that's local to a procedure, you can do
everything with a single ReDim statement:

Sub PrintReport()

 ' This array is visible only to the procedure.

 ReDim Customers(1000) As String

 ' ...

End Sub

If you don't specify the lower index of an array, Visual Basic
assumes it to be 0, unless an Option Base 1 statement is placed at
the beginning of the module. My suggestion is this: Never use an
Option Base statement because it makes code reuse more difficult.
(You can't cut and paste routines without worrying about the current
Option Base.) If you want to explicitly use a lower index different
from 0, use this syntax instead:

ReDim Customers(1 To 1000) As String

Dynamic arrays can be re-created at will, each time with a different
number of items. When you re-create a dynamic array, its contents
are reset to 0 (or to an empty string) and you lose the data it

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0205.%20Data%20Types.htm (15 of 19) [6/26/02 12:44:41 PM]

0205. Data Types

contains. If you want to resize an array without losing its contents,
use the ReDim Preserve command:

ReDim Preserve Customers(2000) As String

When you're resizing an array, you can't change the number of its
dimensions nor the type of the values it contains. Moreover, when
you're using ReDim Preserve on a multidimensional array, you can
resize only its last dimension:

ReDim Cells(1 To 100, 10) As Integer

...

ReDim Preserve Cells(1 To 100, 20) As Integer ' This works.

ReDim Preserve Cells(1 To 200, 20) As Integer ' This doesn't.

Finally, you can destroy an array using the Erase statement. If the
array is dynamic, Visual Basic releases the memory allocated for its
elements (and you can't read or write them any longer); if the array is
static, its elements are set to 0 or to empty strings.

You can use the LBound and UBound functions to retrieve the lower
and upper indices. If the array has two or more dimensions, you
need to pass a second argument to these functions to specify the
dimension you need:

Print LBound(Cells, 1) ' Displays 1, lower index of 1st dimension

Print LBound(Cells) ' Same as above

Print UBound(Cells, 2) ' Displays 20, upper index of 2nd dimension

' Evaluate total number of elements.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0205.%20Data%20Types.htm (16 of 19) [6/26/02 12:44:41 PM]

0205. Data Types

NumEls = (UBound(Cells) _ LBound(Cells) + 1) * _

 (UBound(Cells, 2) _ LBound(Cells, 2) + 1)

Difference Between Static Array and Dynamic Array

Static Array Dynamic Array

It must include fixed Number of
items

It does not include fixed number of items

Static Arrays cannot be resized
during COmpile time.

Dynamic Arrays can be resized after its
Last dimension.

The Static array element set to
0 or to empty string.

Dynamic Arraya can be destroyed uding
Erase Statement and the memory is
released.

Static array can be initialized
not erased.

After dsetroying dynamic Arrays you
cannot read or write them.

Arrays within UDTs

UDT structures can include both static and dynamic arrays. Here's a
sample structure that contains both types:

Type MyUDT

 StaticArr(100) As Long

 DynamicArr() As Long

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0205.%20Data%20Types.htm (17 of 19) [6/26/02 12:44:41 PM]

0205. Data Types

End Type

...

Dim udt As MyUDT

' You must DIMension the dynamic array before using it.

ReDim udt.DynamicArr(100) As Long

' You don't have to do that with static arrays.

udt.StaticArr(1) = 1234

The memory needed by a static array is allocated within the UDT
structure; for example, the StaticArr array in the preceding code
snippet takes exactly 400 bytes. Conversely, a dynamic array in a
UDT takes only 4 bytes, which form a pointer to the memory area
where the actual data is stored. Dynamic arrays are advantageous
when each individual UDT variable might host a different number of
array items. As with all dynamic arrays, if you don't dimension a
dynamic array within a UDT before accessing its items, you get an
error 9-"Subscript out of range."

Collection

Note: To know about collection click here.

Difference between Array and Collection

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0205.%20Data%20Types.htm (18 of 19) [6/26/02 12:44:41 PM]

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/..\06.%20Functions\0607.%20Collection.htm

0205. Data Types

 Array Collection

1 It need to be predimensioned
before using it.

It doesn't require Predimensional
before using it.

2 We can't not generate new
element in between existing
elements.

New element can be inserted
whenever required.

3 Array is a collection of
homogeneous data

Collection can store
nonhomogeneous data.

4 Index represents data Item in
Array which is numeric data
only.

Key represents data Item in
Collection.key can be string value.

5 We can modify any array
element.

We can not modify Collection
Item.

6 Fast in execution. Slower in execution

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0205.%20Data%20Types.htm (19 of 19) [6/26/02 12:44:41 PM]

0206. Variables and Scope of Variables

Variables
Variables are used by Visual Basic to hold information needed by
your application.

Rules used in naming variables:

• No more than 40 characters

• They may include letters, numbers, and underscore (_)

• The first character must be a letter

• You cannot use a reserved word (word needed by Visual
Basic)

Variable Declaration

There are three ways for a variable to be typed (declared):

1. Default

2. Implicit

3. Explicit

• If variables are not implicitly or explicitly typed, they are
assigned the variant type by default. The variant data type is a
special type used by Visual Basic that can contain numeric,
string, or date data.

• To implicitly type a variable, use the corresponding suffix
shown above in the data type table. For example,

TextValue$ = "This is a string" 'creates a string variable

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorial....%20Variables%20and%20Scope%20of%20Variables.htm (1 of 12) [6/26/02 12:44:45 PM]

0206. Variables and Scope of Variables

Amount% = 300 'creates an integer variable

• There are many advantages to explicitly typing variables.
Primarily, we insure all computations are properly done,
mistyped variable names are easily spotted, and Visual Basic
will take care of insuring consistency in upper and lower case
letters used in variable names. Because of these advantages,
and because it is good programming practice, we will explicitly
type all variables.

• To explicitly type a variable, you must first determine its
scope. There are four levels of scope:

Procedure level

Procedure level, static

Form and module level

Global level

• Within a procedure, variables are declared using the Dim
statement:

Dim MyInt as Integer

Dim MyDouble as Double

Dim MyString, YourString as String

Procedure level variables declared in this
manner do not retain their value once a
procedure terminates.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorial....%20Variables%20and%20Scope%20of%20Variables.htm (2 of 12) [6/26/02 12:44:45 PM]

0206. Variables and Scope of Variables

• To make a procedure level variable retain its value upon
exiting the procedure, replace the Dim keyword with Static:

Static MyInt as Integer

Static MyDouble as Double

• Form (module) level variables retain their value and are
available to all procedures within that form (module). Form
(module) level variables are declared in the declarations part of
the general object in the form's (module's) code window. The
Dim keyword is used:

Dim MyInt as Integer

Dim MyDate as Date

• Global level variables retain their value and are available to
all procedures within an application. Module level variables are
declared in the declarations part of the general object of a
module's code window. (It is advisable to keep all global
variables in one module.) Use the Global keyword:

Global MyInt as Integer

Global MyDate as Date

• What happens if you declare a variable with the same name
in two or more places? More local variables shadow (are
accessed in preference to) less local variables. For example, if a
variable MyInt is defined as Global in a module and declared
local in a routine MyRoutine, while in MyRoutine, the local value
of MyInt is accessed. Outside MyRoutine, the global value of
MyInt is accessed.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorial....%20Variables%20and%20Scope%20of%20Variables.htm (3 of 12) [6/26/02 12:44:45 PM]

0206. Variables and Scope of Variables

Scope of Variables

Global Variables

In Visual Basic jargon, global variables are those variables declared
using the Public keyword in BAS modules. Conceptually, these
variables are the simplest of the group because they survive for the
life of the application and their scope is the entire application. (In

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorial....%20Variables%20and%20Scope%20of%20Variables.htm (4 of 12) [6/26/02 12:44:45 PM]

0206. Variables and Scope of Variables

other words, they can be read and modified from anywhere in the
current program.) The following code snippet shows the declaration
of a global variable:

' In a BAS module

Public InvoiceCount as Long ' This is a global variable.

Visual Basic 6 still supports the Global keyword for backward
compatibility with Visual Basic 3 and previous versions, but
Microsoft doesn't encourage its use.

In general, it's a bad programming practice to use too many global
variables. If possible, you should limit yourself to using module-level
or local variables because they allow easier code reuse. If your
modules and individual routines rely on global variables to
communicate with each other, you can't reuse such code without
also copying the definitions of the involved global variables. In
practice, however, it's often impossible to build a nontrivial
application without using global variables, so my suggestion is this:
Use them sparingly and choose for them names that make their
scope evident (for example, using a g_ or glo prefix). Even more
important, add clear comments stating which global variables are
used or modified in each procedure:

' NOTE: this procedure depends on the following global variables:

' g_InvoiceCount : number of invoices (read and modified)

' g_UserName : name of current user (read only)

Sub CreateNewInvoice()

 ...

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorial....%20Variables%20and%20Scope%20of%20Variables.htm (5 of 12) [6/26/02 12:44:45 PM]

0206. Variables and Scope of Variables

End Sub

An alternative approach, which I often find useful, is to define a
special GlobalUDT structure that gathers all the global variables of
the application and to declare one single global variable of type
GlobalUDT in one BAS module:

' In a BAS module

Public Type GlobalUDT

 InvoiceCount As Long

 UserName As String

End Type

Public glo As GlobalUDT

You can access these global variables using a very clear,
unambiguous syntax:

' From anywhere in the application

glo.InvoiceCount = glo.InvoiceCount + 1

This technique has a number of advantages. First, the scope of the
variable is evident by its name. Then if you don't remember the name
of your variable, you can just type the three characters glo, and then
type the dot and let Microsoft IntelliSense show you the list of all the
components. In most cases, you just need to type a few characters
and let Visual Basic complete the name for you. It's a tremendous
time saver. The third advantage is that you can easily save all your

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorial....%20Variables%20and%20Scope%20of%20Variables.htm (6 of 12) [6/26/02 12:44:45 PM]

0206. Variables and Scope of Variables

global variables to a data file:

' The same routine can save and load global data in GLO.

Sub SaveLoadGlobalData(filename As String, Save As Boolean)

 Dim filenum As Integer, isOpen As Boolean

 On Error Goto Error_Handler

 filenum = FreeFile

 Open filename For Binary As filenum

 isOpen = True

 If Save Then

 Put #filenum, , glo

 Else

 Get #filenum, , glo

 End If

Error_Handler:

 If isOpen Then Close #filenum

End Sub

The beauty of this approach is that you can add and remove global
variables-actually, components of the GlobalUDT structure-without
modifying the SaveLoadGlobalData routine. (Of course, you can't

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorial....%20Variables%20and%20Scope%20of%20Variables.htm (7 of 12) [6/26/02 12:44:45 PM]

0206. Variables and Scope of Variables

correctly reload data stored with a different version of GlobalUDT.)

Module-Level Variables

If you declare a variable using a Private or a Dim statement in the
declaration section of a module-a standard BAS module, a form
module, a class module, and so on-you're creating a private module-
level variable. Such variables are visible only from within the module
they belong to and can't be accessed from the outside. In general,
these variables are useful for sharing data among procedures in the
same module:

' In the declarative section of any module

Private LoginTime As Date ' A private module-level variable

Dim LoginPassword As String ' Another private module-level
variable

You can also use the Public attribute for module-level variables, for
all module types except BAS modules. (Public variables in BAS
modules are global variables.) In this case, you're creating a strange
beast: a Public module-level variable that can be accessed by all
procedures in the module to share data and that also can be
accessed from outside the module. In this case, however, it's more
appropriate to describe such a variable as a property:

' In the declarative section of Form1 module

Public CustomerName As String ' A Public property

You can access a module property as a regular variable from inside
the module and as a custom property from the outside:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorial....%20Variables%20and%20Scope%20of%20Variables.htm (8 of 12) [6/26/02 12:44:45 PM]

0206. Variables and Scope of Variables

' From outside Form1 module...

Form1.CustomerName = "John Smith"

The lifetime of a module-level variable coincides with the lifetime of
the module itself. Private variables in standard BAS modules live for
the entire life of the application, even if they can be accessed only
while Visual Basic is executing code in that module. Variables in
form and class modules exist only when that module is loaded in
memory. In other words, while a form is active (but not necessarily
visible to the user) all its variables take some memory, and this
memory is released only when the form is completely unloaded from
memory. The next time the form is re-created, Visual Basic
reallocates memory for all variables and resets them to their default
values (0 for numeric values, "" for strings, Nothing for object
variables).

Dynamic Local Variables

Dynamic local variables are defined within a procedure; their scope
is the procedure itself, and their lifetime coincides with that of the
procedure:

Sub PrintInvoice()

 Dim text As String ' This is a dynamic local variable.

 ...

End Sub

Each time the procedure is executed, a local dynamic variable is re-
created and initialized to its default value (0, an empty string, or

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorial....%20Variables%20and%20Scope%20of%20Variables.htm (9 of 12) [6/26/02 12:44:45 PM]

0206. Variables and Scope of Variables

Nothing). When the procedure is exited, the memory on the stack
allocated by Visual Basic for the variable is released. Local variables
make it possible to reuse code at the procedure level. If a procedure
references only its parameters and its local variables (it relies on
neither global nor module-level variables), it can be cut from one
application and pasted into another without any dependency
problem.

Static Local Variables

Static local variables are a hybrid because they have the scope of
local variables and the lifetime of module-level variables. Their value
is preserved between calls to the procedure they belong to until their
module is unloaded (or until the application ends, as is the case for
procedures inside standard BAS modules). These variables are
declared inside a procedure using the Static keyword:

Sub PrintInvoice()

 Static InProgress As Boolean ' This is a Static local variable.

 ...

End Sub

Alternatively, you can declare the entire procedure to be Static, in
which case all variables declared inside it are considered to be
Static:

Static Sub PrintInvoice()

 Dim InProgress As Boolean ' This is a Static local variable.

 ...

file:///D|/JigneshDhol/VisualBasic/VB%20Tutori...20Variables%20and%20Scope%20of%20Variables.htm (10 of 12) [6/26/02 12:44:45 PM]

0206. Variables and Scope of Variables

End Sub

Static local variables are similar to private module-level variables, to
the extent that you can move a Static declaration from inside a
procedure to the declaration section of the module (you only need to
convert Static to Dim, because Static isn't allowed outside
procedures), and the procedure will continue to work as before. In
general, you can't always do the opposite: Changing a module-level
variable into a Static procedure-level variable works if that variable is
referenced only inside that procedure. In a sense, a Static local
variable is a module-level variable that doesn't need to be shared
with other procedures. By keeping the variable declaration inside the
procedure boundaries, you can reuse the procedure's code more
easily.

Static variables are often useful in preventing the procedure from
being accidentally reentered. This is frequently necessary for event
procedures, as when, for example, you don't want to process user
clicks of the same button until the previous click has been served,
as shown in the code below.

Private Sub cmdSearch_Click()

 Static InProgress As Boolean

 ' Exit if there is a call in progress.

 If InProgress Then MsgBox "Sorry, try again later": Exit Sub

 InProgress = True

 ' Do your search here.

 ...

file:///D|/JigneshDhol/VisualBasic/VB%20Tutori...20Variables%20and%20Scope%20of%20Variables.htm (11 of 12) [6/26/02 12:44:45 PM]

0206. Variables and Scope of Variables

 ' Then reenable calls before exiting.

 InProgress = False

End Sub

file:///D|/JigneshDhol/VisualBasic/VB%20Tutori...20Variables%20and%20Scope%20of%20Variables.htm (12 of 12) [6/26/02 12:44:45 PM]

0207. VB Constants

VB Constants Declaration
Constants, like variables, are named storage locations in memory
with local, form, module, or global scope. Visual Basic prevents the
value of a constant from being changed during program execution.
Visual Basic uses constants more efficiently than variables, so if you
plan to use a value that never changes, you should create a
constant. To create a constant, use the Const statement with the
following syntax:

[Public | Private] Const constname [As type] = expression

You declare constants by following the same rules as for variables
for declaring local, module, or global data. Constants may only be
declared as public within the General Declarations section of a
standard module. For more information, see Declaring Module,
Form, and Public Variables in this chapter.

The following example code declares and uses a public constant:

'General Declarations of a standard module

Public Const PI As Double = 3.1415

'Code within a procedure

dblArea = PI * dblRadius ^ 2

dblCircum = 2 * PI * dblRadius

VB Built-in Constants

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0207.%20VB%20Constants.htm (1 of 12) [6/26/02 12:44:49 PM]

0207. VB Constants

Visual Basic provides predefined constants that are extremely useful
in coding an application.

Alignment Constants

Align Property

Constant Value Description

vbAlignNone 0 Size and location set at design time or in
code.

vbAlignTop 1 Picture box at top of form.

vbAlignBottom 2 Picture box at bottom of form.

vbAlignLeft 3 Picture box at left of form.

vbAlignRight 4 Picture box at right of form.

Alignment Property

Constant Value Description

vbLeftJustify 0 Left align

vbRightJustify 1 Right align

vbCenter 2 Center

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0207.%20VB%20Constants.htm (2 of 12) [6/26/02 12:44:49 PM]

0207. VB Constants

Border Property Constants

BorderStyle Property (Form)

Constant Value Description

vbBSNone 0 No border

vbFixedSingle 1 Fixed single

vbSizable 2 Sizable (forms only)

vbFixedDouble 3 Fixed double (forms only)

BorderStyle Property (Shape and Line)

Constant Value Description

vbTransparent 0 Transparent.

vbBSSolid 1 Solid.

vbBSDash 2 Dash.

vbBSDot 3 Dot.

vbBSDashDot 4 Dash-dot.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0207.%20VB%20Constants.htm (3 of 12) [6/26/02 12:44:49 PM]

0207. VB Constants

vbBSDashDotDot 5 Dash-dot-dot.

vbBSInsideSolid 6 Inside solid.

Color Constants

Colors

Constant Value Description

vbBlack 0x0 Black

vbRed 0xFF Red

vbGreen 0xFF00 Green

vbYellow 0xFFFF Yellow

vbBlue 0xFF0000 Blue

vbMagenta 0xFF00Ff Magenta

vbCyan 0xFFFF00 Cyan

vbWhite 0xFFFFFF White

Control Constants

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0207.%20VB%20Constants.htm (4 of 12) [6/26/02 12:44:49 PM]

0207. VB Constants

ComboBox Control

Constant Value Description

vbComboDropdown 0 DropdownCombo

vbComboSimple 1 Simple Combo

vbComboDropdown List 2 DropdownList

ListBox Control

Constant Value Description

vbMultiSelectNone 0 None

vbMultiSelectSimple 1 Simple

vbMultiSelectExtended 2 Extended

ScrollBar Control

Constant Value Description

vbSBNone 0 None

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0207.%20VB%20Constants.htm (5 of 12) [6/26/02 12:44:49 PM]

0207. VB Constants

vbHorizontal 1 Horizontal

vbVertical 2 Vertical

vbBoth 3 Both

Shape Control

Constant Value Description

vbShapeRectangle 0 Rectangle

vbShapeSquare 1 Square

vbShapeOval 2 Oval

vbShapeCircle 3 vbShapeCircle

vbShapeRoundedRectangle 4 Rounded rectangle

vbShapeRoundedSquare 5 Rounded square.

Data Control Constants

Options Property Constants

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0207.%20VB%20Constants.htm (6 of 12) [6/26/02 12:44:49 PM]

0207. VB Constants

Constant Value Description

vbDataDenyWrite 1 Other users can't change records
in recordset.

vbDataDenyRead 2 Other users can't read records in
recordset.

vbDataReadOnly 4 No user can change records in
recordset.

vbDataAppendOnly 8 New records can be added to the
recordset, but existing records
can't be read.

vbDataInconsistent 16 Updates can apply to all fields of
the recordset.

vbDataConsistent 32 Updates apply only to those
fields that will not affect other
records in the recordset.

vbDataSQLPassThrough 64 Sends an SQL statement to an
ODBC database.

Beginning-of-File Constants

Constant Value Description

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0207.%20VB%20Constants.htm (7 of 12) [6/26/02 12:44:49 PM]

0207. VB Constants

vbMoveFirst 0 Move to first record.

vbBOF 1 Move to beginning of file.

End-of-File Constants

Constant Value Description

vbMovelLat 0 Move to last record

vbEOF 1 Move to end of file

vbAddNew 2 Add new record to end
of file.

Recordset-Type Constants

Constant Value Description

vbRSTypeTable 0 Table-type recordset

vbRSTypeTable 1 Dynaset-type recordset

vbRSTypeSnapShot 2 Snapshot-type recordset

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0207.%20VB%20Constants.htm (8 of 12) [6/26/02 12:44:49 PM]

0207. VB Constants

Date Constants

Return Values

Constant Value Description

vbSunday 1 Sunday

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

Dir, GetAttr, and SetAttr Constants

Constant Value Description

vbNormal 0 Normal(default for Dir and SetAttr)

vbReadOnly 1 Readonly

vbHidden 2 Hidden

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0207.%20VB%20Constants.htm (9 of 12) [6/26/02 12:44:49 PM]

0207. VB Constants

vbSystem 4 System file

vbVolume 8 Volume label

vbDirectory 16 Directory

vbArchive 32 File has changed since last backup

Form Constants

Show Parameters

Constant Value Description

vbModal 1 Modal from

vbModeless 0 Modelessform

Arrange Method for MDI Forms

Constant Value Description

vbCascade 0 Cascade all nonminimized MDI child froms

vbTileHorizontal 1 Horizontally tile all nonminimized MDI child
froms

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0207.%20VB%20Constants.htm (10 of 12) [6/26/02 12:44:49 PM]

0207. VB Constants

vbTileVertical 2 Vertically tile all nonminimized MDI child forms

vbArrangeIcons 3 Arrange icons for minimized MDI child forms.

WindowState Property

Constant Values Description

vbNormal 0 Normal

vbMinimized 1 Minimized

vbMaximized 2 Maximized

Miscellaneous Constants

ZOrder Method

Constant Value Description

vbBringToFront 0 Bring to front

vbSendToBack 1 Send to back

Shell Constants

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0207.%20VB%20Constants.htm (11 of 12) [6/26/02 12:44:49 PM]

0207. VB Constants

StrConv Constants

Constant Value Description

vbUpper 1 Uppercases the string

vbLower 2 Lowercases the string

vbProperCase 3 Uppercases first letter of every word
in string.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0207.%20VB%20Constants.htm (12 of 12) [6/26/02 12:44:49 PM]

0208. Statements

Statements
1. Branch statement

The main branch statement is the If...Else...Else If...End If block.
Visual Basic supports several flavors of this statement, including
single-line and multiline versions:

' Single line version, without Else clause

If x > 0 Then y = x

' Single line version, with Else clause

If x > 0 Then y = x Else y = 0

' Single line, but with multiple statements separated by colons

If x > 0 Then y = x: x = 0 Else y = 0

' Multiline version of the above code (more readable)

If x > 0 Then

 y = x

 x = 0

Else

 y = 0

End If

' An example of If..ElseIf..Else block

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0208.%20Statements.htm (1 of 9) [6/26/02 12:44:52 PM]

0208. Statements

If x > 0 Then

 y = x

ElseIf x < 0 Then

 y = x * x

Else ' X is surely 0, no need to actually test it.

 x = -1

End If

You should be aware that any nonzero value after the If keyword is
considered to be True and therefore fires the execution of the Then
block:

Note: The following lines are equivalent.

If value <> 0 Then Print "Non Zero"

If value Then Print "Non Zero"

The following examples show how you can often write more concise
and efficient code by rewriting a Boolean expression:

' If two numbers are both zero, you can apply the OR
operator

' to their bits and you still have zero.

If x = 0 And y = 0 Then ...

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0208.%20Statements.htm (2 of 9) [6/26/02 12:44:52 PM]

0208. Statements

If (x Or y) = 0 Then ...

' If either value is <>0, you can apply the OR operator

' to their bits and you surely have a nonzero value.

If x <> 0 Or y <> 0 Then ...

If (x Or y) Then ...

If Not (x = y) Then ... ' The same as x<>y

If Not x Then ... ' The same as x<>-1, don't use instead of x=0

• As an example, say we have a text box (named txtExample) and
we only want to be able to enter upper case letters (ASCII codes 65
through 90, or, correspondingly, symbolic constants vbKeyA through
vbKeyZ). The key press procedure would look like (the Beep causes
an audible tone if an incorrect key is pressed):

Sub txtExample_KeyPress(KeyAscii as Integer)

 If KeyAscii >= vbKeyA And KeyAscii <= vbKeyZ Then

 Exit Sub

 Else

 KeyAscii = 0

 Beep

 End If

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0208.%20Statements.htm (3 of 9) [6/26/02 12:44:52 PM]

0208. Statements

End Sub

• In key trapping, it's advisable to always allow the backspace key
(ASCII code 8; symbolic constant vbKeyBack) to pass through the
key press event. Else, you will not be able to edit the text box
properly.

2. Select case statement

The Select Case statement is less versatile than the If block in that it
can test only one expression against a list of values:

Select Case Text1.text

 Case "0" To "9"

 ' It's a digit.

 Case "A" To "Z", "a" To "z"

 ' It's a letter.

 Case ".", ",", " ", ";", ":", "?"

 ' It's a punctuation symbol or a space.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0208.%20Statements.htm (4 of 9) [6/26/02 12:44:52 PM]

0208. Statements

 Case Else

 ' It's something else.

End Select

Note 1:

' This series of subexpressions connected by the AND
operator:

If x > 0 And Sqr(y) > x And Log(x) < z Then z = 0

' can be rewritten as:

Select Case False

 Case x > 0, Sqr(y) > x, Log(x) < z

 ' Do nothing if any of the above meets the condition,

 ' that is, is False.

 Case Else

 ' This is executed only if all the above are True.

 z = 0

End Select

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0208.%20Statements.htm (5 of 9) [6/26/02 12:44:52 PM]

0208. Statements

Note 2:

' This series of subexpressions connected by the OR
operator:

If x = 0 Or y < x ^ 2 Or x * y = 100 Then z = 0

' can be rewritten as:

Select Case True

 Case x = 0, y < x ^ 2, x * y = 100

 ' This is executed as soon as one of the above is found

 ' to be True.

 z = 0

End Select

3. Goto statement

• Another branching statement, and perhaps the most hated
statement in programming, is the GoTo statement. However, we
will need this to do Run-Time error trapping. The format is GoTo
Label, where Label is a labeled line. Labeled lines are formed by
typing the Label followed by a colon.

GoTo Example:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0208.%20Statements.htm (6 of 9) [6/26/02 12:44:52 PM]

0208. Statements

xyz :

GoTo xyz

When the code reaches the GoTo statement, program control
transfers to the line labeled xyz.

4. Other Functions

• A few VBA functions are closely related to control flow, even
if by themselves they don't alter the execution flow. The IIf
function, for example, can often replace an If...Else...End If
block, as in the following code:

' These lines are equivalent.

If x > 0 Then y = 10 Else y = 20

y = IIf(x > 0, 10, 20)

• The Switch function accepts a list of (condition, value) pairs

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0208.%20Statements.htm (7 of 9) [6/26/02 12:44:52 PM]

0208. Statements

and returns the first value that corresponds to a condition that
evaluates as True. See, for example, how you can use this
function to replace this Select Case block:

Select Case x

 Case Is <= 10: y = 1

 Case 11 To 100: y = 2

 Case 101 To 1000: y = 3

 Case Else: y = 4

End Select

'Same effect in just one line.

' The last "True" expression replaces the "Else" clause.

y = Switch(x <= 10, 1, x <= 100, 2, x <= 1000, 3, True, 4)

CAUTION

While the IIf, Choose, and Switch functions are sometimes
useful for reducing the amount of code you have to write,
you should be aware that they're always slower than the If or
Select Case structure that they're meant to replace. For this

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0208.%20Statements.htm (8 of 9) [6/26/02 12:44:52 PM]

0208. Statements

reason, you should never use them in time-critical loops.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0208.%20Statements.htm (9 of 9) [6/26/02 12:44:52 PM]

0209. Loops

Loops
• Looping is done with the Do/Loop format. Loops are used for
operations are to be repeated some number of times. The loop
repeats until some specified condition at the beginning or end of
the loop is met.

• Do While/Loop Example:

Counter = 1

Do While Counter <= 1000

 Debug.Print Counter

 Counter = Counter + 1

Loop

This loop repeats as long as (While) the variable
Counter is less than or equal to 1000. Note a Do
While/Loop structure will not execute even once if
the While condition is violated (False) the first time
through. Also note the Debug.Print statement. What
this does is print the value Counter in the Visual
Basic Debug window. We'll learn more about this
window later in the course.

• Do Until/Loop Example:

Counter = 1

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0209.%20Loops.htm (1 of 6) [6/26/02 12:44:54 PM]

0209. Loops

Do Until Counter > 1000

 Debug.Print Counter

 Counter = Counter + 1

Loop

This loop repeats Until the Counter variable
exceeds 1000. Note a Do Until/Loop structure will
not be entered if the Until condition is already True
on the first encounter.

• Do/Loop While Example:

Sum = 1

Do

 Debug.Print Sum

 Sum = Sum + 3

Loop While Sum <= 50

This loop repeats While the Variable Sum is less
than or equal to 50. Note, since the While check is
at the end of the loop, a Do/Loop While structure is
always executed at least once.

• Do/Loop Until Example:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0209.%20Loops.htm (2 of 6) [6/26/02 12:44:54 PM]

0209. Loops

Sum = 1

Do

 Debug.Print Sum

 Sum = Sum + 3

Loop Until Sum > 50

This loop repeats Until Sum is greater than 50. And,
like the previous example, a Do/Loop Until structure
always executes at least once.

Make sure you can always get out
of a loop! Infinite loops are never
nice. If you get into one, try
Ctrl+Break. That sometimes works -
other times the only way out is
rebooting your machine!

The statement Exit Do will get you
out of a loop and transfer program
control to the statement following
the Loop statement.

• Visual Basic Counting or For/Next loop.

Counting is accomplished using the For/Next loop.

For counter = startvalue To endvalue [Step

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0209.%20Loops.htm (3 of 6) [6/26/02 12:44:54 PM]

0209. Loops

increment]

 ' Statements to be executed in the loop...

Next

Example

For J = 1 to 50 Step 2

 A = J * 2

 Debug.Print A

Next J

In this example, the variable J initializes at 1 and,
with each iteration of the For/Next loop, is
incremented by 2 (Step). This looping continues
until J becomes greater than or equal to its final
value (50). If Step is not included, the default value
is 1. Negative values of Step are allowed.

You may exit a For/Next loop using an Exit For
statement. This will transfer program control to the
statement following the Next statement.

TIP

Always use an Integer or Long variable as the controlling variable of
a For...Next loop because they're faster than a Single or a Double
controlling variable, by a factor of 10 or more. If you need to
increment a floating-point quantity, the most efficient technique is

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0209.%20Loops.htm (4 of 6) [6/26/02 12:44:54 PM]

0209. Loops

explained in the next example.

This technique permits you to execute a block of statements with
different values for a controlling variable, which don't need to be in
sequence:

' Test if Number can be divided by any of the first 10 prime
numbers.

Dim var As Variant, NotPrime As Boolean

For Each var In Array(2, 3, 5, 7, 11, 13, 17, 19, 23, 29)

 If (Number Mod var) = 0 Then NotPrime = True: Exit For

Next

The values don't even have to be numeric:

' Test if SourceString contains the strings "one", "two", "three",
etc.

Dim var2 As Variant, MatchFound As Boolean

For Each var2 In Array("one", "two", "three", "four", "five")

 If InStr(1, SourceString, var2, vbTextCompare) Then

 MatchFound = True: Exit For

 End If

Next

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0209.%20Loops.htm (5 of 6) [6/26/02 12:44:54 PM]

0209. Loops

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0209.%20Loops.htm (6 of 6) [6/26/02 12:44:54 PM]

0210. Operators

Visual Basic Operators
• Arithmetic operators:

The simplest operators carry out arithmetic operations. These
operators in their order of precedence are:

^ Exponentiation

* / Multiplication and division

\ Integer division (truncates)

Mod Modulus

+ - Addition and subutraction

Parentheses around expressions can change precedence.

• Concatentate Operator:

To concatentate two strings, use the & symbol or the + symbol:

lblTime.Caption = "The current time is" & Format(Now, "hh:mm")

txtSample.Text = "Hook this " + "to this"

• Comparison Operators:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0210.%20Operators.htm (1 of 3) [6/26/02 12:44:56 PM]

0210. Operators

There are six comparison operators in Visual Basic:

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

= Equal to

<> Not equal to

The result of a comparison operation is a Boolean value (True or
False)

• Logical Operators:

We will use three logical operators

Not Logical not

And Logical and

Or Logical or

The Not operator simply negates an operand.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0210.%20Operators.htm (2 of 3) [6/26/02 12:44:56 PM]

0210. Operators

The And operator returns a True if both operands are True.
Else, it returns a False.

The Or operator returns a True if either of its operands is
True, else it returns a False.

Logical operators follow arithmetic operators in precedence.

Operator evaluation precedence

1. First: Arithmetic

2. Second: Comparison

3. Last: Logical Operator

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0210.%20Operators.htm (3 of 3) [6/26/02 12:44:56 PM]

0301. Common Properties

At first glance, it might seem that Visual Basic 6 supports countless
properties for various objects. Fortunately, there's a set of properties
many objects of different classes share. In this section, we'll
examine these common properties.

The Left, Top, Width, and Height Properties
By default, these properties are measured in twips, a unit that lets
you create resolution-independent user interfaces, but you can
switch to another unit, for example, pixels or inches, by setting the
container's ScaleMode property. But you can't change the unit used
for forms because they have no container: Left, Top, Width, and
Height properties for forms are always measured in twips.

' Double a form's width, and move it to the

' upper left corner of the screen.

Form1.Width = Form1.Width * 2

Form1.Left = 0

Form1.Top = 0

CAUTION

Controls don't necessarily have to support all four properties in a
uniform manner. For example, ComboBox controls' Height property
can be read but not written to, both at design time and run time.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0301.%20Common%20Properties.htm (1 of 8) [6/26/02 2:43:56 PM]

0301. Common Properties

The ForeColor and BackColor Properties
The effect of these properties depends on other properties: for
example,

• Setting the BackColor property of a Label control has no
effect if you set the BackStyle property of that Label to 0-
Transparent.

• CommandButton controls are peculiar in that they expose a
BackColor property but not a ForeColor property, and the
background color is active only if you also set the Style property
to 1-Graphical.

My first suggestion is always use a standard color value unless you
have a very good reason to use a custom color.

' Make Label1 appear in a selected state.

Label1.ForeColor = vbHighlightText

Label1.BackColor = vbHighlight

When you're assigning a custom color, you can use one of the
symbolic constants that Visual Basic defines for the most common
colors (vbBlack, vbBlue, vbCyan, vbGreen, vbMagenta, vbRed,
vbWhite, and vbYellow), or you can use a numeric decimal or
hexadecimal constant:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0301.%20Common%20Properties.htm (2 of 8) [6/26/02 2:43:56 PM]

0301. Common Properties

' These statements are equivalent.

Text1.BackColor = vbCyan

Text1.BackColor = 16776960

Text1.BackColor = &HFFFF00

You can also use an RGB function to build a color value composed
of its red, green, and blue components. Finally, to ease the porting of
existing QuickBasic applications, Visual Basic supports the QBColor
function:

' These statements are equivalent to the ones above.

Text1.BackColor = RGB(0, 255, 255) ' red, green, blue values

Text1.BackColor = QBColor(11)

The Font Property
Font is a compound object, and you must assign its properties
separately. Font objects expose the Name, Size, Bold, Italic,
Underline, and Strikethrough properties.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0301.%20Common%20Properties.htm (3 of 8) [6/26/02 2:43:56 PM]

0301. Common Properties

Text1.Font.Name = "Tahoma"

Text1.Font.Size = 12

Text1.Font.Bold = True

Text1.Font.Underline = True

TIP

You can use the Set command to assign whole Font objects to
controls.

' Assign to Text2 the same font as used by Text1.

Set Text2.Font = Text1.Font

The Caption and Text Properties
The Caption property is special in that it can include an ampersand
(&) character to associate a hot key with the control. The Text
property, when present, is always the default property for the
control, which means that it can be omitted in code:

' These statements are equivalent.

Text2.Text = Text1.Text

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0301.%20Common%20Properties.htm (4 of 8) [6/26/02 2:43:56 PM]

0301. Common Properties

Text2 = Text1

NOTE

In general, if a control exposes the Text property it also supports the
SelText, SelStart, and SelLength properties, which return information
about the portion of text that's currently selected in the control.

The Enabled and Visible Properties
For instance, a Form is a container for its controls and a Frame
control can be a container for a group of OptionButton controls-
setting its Visible or Enabled properties indirectly affects the state of
its contained objects. This feature can often be exploited to reduce
the amount of code you write to enable or disable a group of related
controls.

' Enable or disable the Text1 control when

' the user clicks on the Check1 CheckBox control.

Private Sub Check1_Click()

 Text1.Enabled = (Check1.Value = vbChecked)

End Sub

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0301.%20Common%20Properties.htm (5 of 8) [6/26/02 2:43:56 PM]

0301. Common Properties

The TabStop and TabIndex Properties
If a control is able to receive the input focus, it exposes the TabStop
property. Most intrinsic controls support this property, including
TextBox, OptionButton, CheckBox, CommandButton, OLE,
ComboBox, both types of scroll bars, the ListBox control, and all its
variations. The default value for this property is True, but you can
set it to False either at design time or run time.If a control supports
the TabStop property, it also supports the TabIndex property, which
affects the Tab order sequence-that is, the sequence in which the
controls are visited when the user presses the Tab key repeatedly.

' Let the user press the Alt+N hot key

' to move the input focus on the Text1 control.

Label1.Caption = "&Name"

Text1.TabIndex = Label1.TabIndex + 1

The MousePointer and MouseIcon
Properties
If you want to show an hourglass cursor, wherever the user moves
the mouse, use this code:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0301.%20Common%20Properties.htm (6 of 8) [6/26/02 2:43:56 PM]

0301. Common Properties

' A lengthy routine

Screen.MousePointer = vbHourglass

...

' Do your stuff here

...

' but remember to restore default pointer.

Screen.MousePointer = vbDefault

Here's another example:

' Show a crosshair cursor when the mouse is over the Picture1

' control and an hourglass elsewhere on the parent form.

Picture1.MousePointer = vbCrosshair

MousePointer = vbHourglass

the MouseIcon property is used to display a custom, user-defined
mouse cursor. In this case, you must set the MousePointer to the
special value 99-vbCustom and then assign an icon to the
MouseIcon property:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0301.%20Common%20Properties.htm (7 of 8) [6/26/02 2:43:56 PM]

0301. Common Properties

The Tag Property
All controls support the Tag property, without exception. This is true
even for ActiveX controls, including any third-party controls. How
can I be so certain that all controls support this property? The
reason is that the property is provided by Visual Basic itself, not by
the control. Tag isn't the only property provided by Visual Basic to
any control: Index, Visible, TabStop, TabIndex, ToolTipText,
HelpContextID, and WhatsThisHelpID properties all belong to the
same category. These properties are collectively known as extender
properties. Note that a few extender properties are available only
under certain conditions. For example, TabStop is present only if the
control can actually receive the focus. The Tag property is
distinctive because it's guaranteed to be always available, and you
can reference it in code without any risk of raising a run-time error.

The Tag property has no particular meaning to Visual Basic: It's
simply a container for any data related to the control that you want
to store. For example, you might use it to store the initial value
displayed in a control so that you can easily restore it if the user
wants to undo his or her changes.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0301.%20Common%20Properties.htm (8 of 8) [6/26/02 2:43:56 PM]

0302. Common Methods

Just as there are many properties that most objects share, they also
have many methods in common. In this section, we examine these
methods.

The Move Method
If a control supports Left, Top, Width, and Height properties, it also
supports the Move method, through which you can change some or
all four properties in a single operation. The following example
changes three properties: Left, Top, and Width.

' Double a form's width, and move it to the upper left corner of
the screen.

' Syntax is: Control.Move Left, Top, Width, Height.

Form1.Move 0, 0, Form1.Width * 2

TIP

The Move method should always be preferred to individual property
assignment for at least two reasons: This operation is two to three
times faster than four distinct assignments, and if you're modifying
the Width and Height properties of a form, each individual property
assignments would fire a separate Resize event, thus adding a lot of
overhead to your code.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0302.%20Common%20Methods.htm (1 of 5) [6/26/02 2:43:59 PM]

0302. Common Methods

The Refresh Method
The Refresh method causes the control to be redrawn. But you can
explicitly invoke this method when you modify a control's property
and you want the user interface to be immediately updated:

For n = 1000 To 1 Step -1

 Label1.Caption = CStr(i)

 Label1.Refresh ' Update the label immediately.

Next

CAUTION

If you want to update all the controls on a form but you don't want
the end user to interact with the program, just execute the Refresh
method of the parent form.

The SetFocus Method

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0302.%20Common%20Methods.htm (2 of 5) [6/26/02 2:43:59 PM]

0302. Common Methods

' Move the focus to Text1.

If Text1.Visible And Text1.Enabled Then

 Text1.SetFocus

End If

And here's the code for the other possible approach, using the
On Error statement:

' Move the focus to Text1.

On Error Resume Next

Text1.SetFocus

Here's another possible solution:

Private Sub Form_Load()

 Text1.TabIndex = 0

End Sub

The ZOrder Method
The ZOrder method affects the visibility of the control with respect to
other overlapping controls. You just execute this method without

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0302.%20Common%20Methods.htm (3 of 5) [6/26/02 2:43:59 PM]

0302. Common Methods

any argument if you want to position the control in front of other
controls; or you can pass 1 as an argument to move the control
behind other controls:

' Move a control behind any other control on the form.

Text1.ZOrder 1

Text1.ZOrder ' Move it in front.

Note that you can set the relative z-order of controls at design time
using the commands in the Order submenu of the Format menu, and
you can also use the Ctrl+J key combination to bring the selected
control to the front or the Ctrl+K key combination to move it behind
other controls.

The actual behavior of the ZOrder method depends on whether the
control is standard or lightweight. In fact, lightweight controls can
never appear in front of standard controls. In other words, the two
types of controls-standard and lightweight-are located on distinct z-
order layers, with the layer of standard controls in front of the layer
of lightweight controls. This means that the ZOrder method can
change the relative z-order of a control only within the layer it
belongs to. For example, you can't place a Label (lightweight) control
in front of a TextBox (standard) control. However, if the standard
control can behave like a container control-a PictureBox or a Frame
control, for example-you can make a lightweight control appear in
front of the standard control if you place the lightweight control
inside that container control, as you can see in Figure 2-5.

The ZOrder method also applies to forms. You can send a form
behind all other forms in the same Visual Basic application, or you
can bring it in front of them. You can't use this method, however, to

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0302.%20Common%20Methods.htm (4 of 5) [6/26/02 2:43:59 PM]

0302. Common Methods

control the relative position of your forms with respect to windows
belonging to other applications.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0302.%20Common%20Methods.htm (5 of 5) [6/26/02 2:43:59 PM]

0303. Common Events

In addition to common properties and methods, Visual Basic 6 forms
and controls support common events. In this section, we'll describe
these events in some detail.

The Click and DblClick Events
Whenever a CheckBox or an OptionButton control's Value property
changes through code, Visual Basic fires a Click event, exactly as if
the user had clicked on it.

ListBox and ComboBox controls also fire Click events whenever
their ListIndex properties change.

TIP

Also notice that when you double-click on a control, it receives both
the Click and the DblClick events. This makes it difficult to
distinguish single clicks from double-clicks. While you shouldn't
assign separate effects to click and double-click actions on the same
control, here's a simple method to work around the problem of
finding out what the user actually did:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0303.%20Common%20Events.htm (1 of 10) [6/26/02 2:44:02 PM]

0303. Common Events

' A module-level variable

Dim isClick As Boolean

Private Sub Form_Click()

 Dim t As Single

 isClick = True

 ' Wait for the second click for half a second.

 t = Timer

 Do

 DoEvents

 ' If the DblClick procedure canceled this event,

 ' bail out.

 If Not isClick Then Exit Sub

 ' The next test accounts for clicks just before midnight.

 Loop Until Timer > t + .5 Or Timer < t

 ' Do your single-click processing here.

 ...

End Sub

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0303.%20Common%20Events.htm (2 of 10) [6/26/02 2:44:02 PM]

0303. Common Events

Private Sub Form_DblClick()

 ' Cancel any pending click.

 isClick = False

 ' Do your double-click processing here.

 ...

End Sub

The Change Event
Whenever the contents of a control change, Visual Basic fires a
Change event.

TextBox and ComboBox controls raise a Change event when the
user types something in the editable area of the control. (But be
careful, the ComboBox control raises a Click event when the user
selects an item from the list portion rather than types in a box.)

Both scroll bar controls raise the Change event when the user clicks
on either arrows or moves the scroll boxes.

The Change event is also supported by the PictureBox,
DriveListBox, and DirListBox controls.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0303.%20Common%20Events.htm (3 of 10) [6/26/02 2:44:02 PM]

0303. Common Events

The GotFocus and LostFocus Events
These events are conceptually very simple: GotFocus fires when a
control receives the input focus, and LostFocus fires when the input
focus leaves it and passes to another control. Finally, note that
forms support both GotFocus and LostFocus events, but these
events are raised only when the form doesn't contain any control
that can receive the input focus, either because all of the controls
are invisible or the TabStop property for each of them is set to False.

The KeyPress, KeyDown, and KeyUp Events
These events fire whenever the end user presses a key while a
control has the input focus. The exact sequence is as follows:

KeyDown (the users presses the key),

KeyPress (Visual Basic translates the key into an ANSI numeric
code), and

KeyUp (the user releases the key).

Only keys that correspond to control keys (Ctrl+x, BackSpace, Enter,
and Escape) and printable characters activate the KeyPress event.

For all other keys-including arrow keys, function keys, Alt+x key
combinations, and so on-this event doesn't fire and only the
KeyDown and KeyUp events are raised.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0303.%20Common%20Events.htm (4 of 10) [6/26/02 2:44:02 PM]

0303. Common Events

The KeyPress event is the simplest of the three. It's passed the ANSI
code of the key that has been pressed by the user, so you often need
to convert it to a string using the Chr$() function:

Private Sub Text1_KeyPress(KeyAscii As Integer)

 ' Convert all keys to uppercase, and reject blanks.

 KeyAscii = Asc(UCase$(Chr$(KeyAscii)

 If KeyAscii = Asc(" ") Then KeyAscii = 0

End Sub

The KeyDown and KeyUp events receive two parameters, KeyCode
and Shift. The former is the code of the pressed key, the latter is an
Integer value that reports the state of the Ctrl, Shift, and Alt keys;
because this value is bit-coded, you have to use the AND operator to
extract the relevant information:

Private Sub Text1_KeyDown(KeyCode As Integer, Shift As
Integer)

 If Shift And vbShiftMask Then

 ' Shift key pressed

 End If

 If Shift And vbCtrlMask Then

 ' Ctrl key pressed

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0303.%20Common%20Events.htm (5 of 10) [6/26/02 2:44:02 PM]

0303. Common Events

 End If

 If Shift And vbAltMask Then

 ' Alt key pressed

 End If

 ' ...

End Sub

The KeyCode parameter tells which physical key has been pressed,
and it's therefore different from the KeyAscii parameter received by
the KeyPress event. You usually test this value using a symbolic
constant, as in the following code:

Private Sub Text1_KeyDown(KeyCode As Integer, Shift As
Integer)

 ' If user presses Ctrl+F2, replace the contents

 ' of the control with the current date.

 If KeyCode = vbKeyF2 And Shift = vbCtrlMask Then

 Text1.Text = Date$

 End If

End Sub

In contrast to what you can do with the KeyPress event, you can't

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0303.%20Common%20Events.htm (6 of 10) [6/26/02 2:44:02 PM]

0303. Common Events

alter the program's behavior if you assign a different value to the
KeyCode parameter.

For example, suppose that you want to offer your users the ability to
clear the current field by pressing the F7 key. You don't want to write
the same piece of code in the KeyDown event procedure for each
and every control on your form, and fortunately you don't have to. In
fact, you only have to, set the form's KeyPreview property to True
(either at design time or at run time, in the Form_Load procedure, for
example) and then write this code:

Private Sub Form_KeyDown(KeyCode As Integer, Shift As
Integer)

 If KeyCode = vbKeyF7 Then

 ' An error handler is necessary because we can't be sure

 ' that the active control actually supports the Text

 ' property.

 On Error Resume Next

 ActiveControl.Text = ""

 End If

End Sub

If the form's KeyPreview property is set to True, the Form object
receives all keyboard-related events before they're sent to the
control that currently has the input focus. Use the form's

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0303.%20Common%20Events.htm (7 of 10) [6/26/02 2:44:02 PM]

0303. Common Events

ActiveControl property if you need to act on the control with the
input focus, as in the previous code snippet.

The MouseDown, MouseUp, and
MouseMove Events
While writing code for mouse events, you should be aware of a few
implementation details as well as some pitfalls in using these
events. Keep in mind the following points:

When you press a mouse button over a form or a control and then
move the mouse outside its client area while keeping the button
pressed, the original control continues to receive mouse events. In
this case, the mouse is said to be captured by the control: the
capture state terminates only when you release the mouse button.
All the MouseMove and MouseUp events fired in the meantime might
receive negative values for the x and y parameters or values that
exceed the object's width or height, respectively.

MouseDown and MouseUp events are raised any time the user
presses or releases a button. For example, if the user presses the
left button and then the right button (without releasing the left
button), the control receives two MouseDown events and eventually
two MouseUp events.

The Button parameter passed to MouseDown and MouseUp events
reports which button has just been pressed and released,
respectively. Conversely, the MouseMove event receives the current
state of all (two or three) mouse buttons.

When the user releases the only button being pressed, Visual Basic

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0303.%20Common%20Events.htm (8 of 10) [6/26/02 2:44:02 PM]

0303. Common Events

fires a MouseUp event and then a MouseMove event, even if the
mouse hasn't moved. This detail is what makes the previous code
example work correctly after a button release: The current status is
updated by the extra MouseMove event, not by the MouseUp event,
as you probably expected. Note, however, that this additional
MouseMove event doesn't fire when you press two buttons and then
release only one of them.

It's interesting to see how MouseDown, MouseUp, and MouseMove
events relate to Click and DblClick events:

A Click event occurs after a MouseDown &ldots; MouseUp
sequence and before the extra MouseMove event.
When the user double-clicks on a control, the complete event
sequence is as follows: MouseDown, MouseUp, Click,
MouseMove, DblClick, MouseUp, MouseMove. Note that the
second MouseDown event isn't generated.
If the control is clicked and then the mouse is moved outside its
client area, the Click event is never raised. However, if you
double-click a control and then you move the mouse outside its
client area, the complete event sequence occurs. This behavior
reflects how controls work under Windows and shouldn't be
considered a bug.

Difference between Methods and Events

Method Event

They are inbuilt procerdure in Visual
basic.

They are user written procedure in
the Visual Basic.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0303.%20Common%20Events.htm (9 of 10) [6/26/02 2:44:02 PM]

0303. Common Events

By taking object on a from we can
get method list while writing the
form code.

The events are fired when the user
passes any action on the object
through code.

A method requries an object tp
provide them a context.

When we select a object it events
are automatically added to form
Module.

User cannot write their own
methods for the controls.

Users can write their own code in an
event to force a control to react
precisely the way you want it to.

Combo1.Additem Combo1.Dbclick()

e.g Line , Circle, psets, points are
methods.

e.g Paint is a graphic events.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0303.%20Common%20Events.htm (10 of 10) [6/26/02 2:44:02 PM]

0304. Form Methods

The Show Method
The Show method displays a Form object. If the form is not already
loaded, the Show method will automatically load it for you. To use
the Show method, use the following syntax:

object.Show style, ownerform

The style parameter is an integer value that determines if the form
being shown is modal or modeless. A modal form requires the user
to take some action before the focus can switch to another form
within an application. A modeless form does not require a response
from the user before the focus can be switched to another form
within an application. The ownerform parameter specifies the
component which "owns" the form being shown. Both the style and
ownerform parameters are optional.

The following example code uses the Show method:

frmCustomerInfo.Show

The Load Statement
The Load statement loads a form into memory but does not display
it. To use the Load statement, use the following syntax:

Load object

The following example code uses the Load statement:

Load frmCustomerInfo

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0304.%20Form%20Methods.htm (1 of 6) [6/26/02 2:44:04 PM]

0304. Form Methods

Note

You don’t need to use the Load statement with forms unless you
want to load a form without displaying it. Any reference to a form
automatically loads the form if the form is not already loaded. Once
the form is loaded, its properties and controls can be altered by the
application, whether or not the form is actually visible.

TIP

You can use both the Show method and the Load statement to load a
form into memory; however, the Show method displays the form;
while the Load statement does not.

The Hide Method
The Hide method will cause the form to be invisible. The form
remains in memory.

To use the Hide method, use the following syntax:

object.Hide

The following example code invokes the Hide method:

frmMain.Hide

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0304.%20Form%20Methods.htm (2 of 6) [6/26/02 2:44:04 PM]

0304. Form Methods

Note

If the form isn’t loaded when the Hide method is invoked, the Hide
method loads the form but doesn’t display it.

The Unload Statement
Unloading a form removes the form from the display and releases its
memory. You can also unload a form, then load it again to reset its
properties to their original values. The Unload statement:

§ Unloads a form or control from memory.

§ Releases the display component of the form from memory.

§ Resets the form and control properties to their original
values. If any changes were made to the form, either by the
program or by the user, these changes are lost.

§ Invokes the Unload event.

§ Terminates execution of the application if the unloaded form
is the only form in the application.

To use the Unload statement, use the following syntax:

Unload object

The following example code invokes the Unload statement:

Unload frmMain

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0304.%20Form%20Methods.htm (3 of 6) [6/26/02 2:44:04 PM]

0304. Form Methods

Note

• You can use the Me keyword to reference the current form.
For example, Unload Me unloads the current form from memory.

• An application does not end until all forms are unloaded
from memory. The End statement removes all forms from
memory and ends the application.

The Unload Event
Use an Unload event procedure to verify that the form should be
unloaded or to specify actions you want to take place when the form
is unloaded. Any form-level validation code needed for closing the
form or saving its data to a file can also be included. The Unload
event occurs when:

§ The form is unloaded using the Unload statement.

§ The form is closed by the user either clicking the Close
command on the application menu, or clicking the Close button
on the application title bar.

Note

• The Unload event does not occur if the form is removed from
memory by the End statement.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0304.%20Form%20Methods.htm (4 of 6) [6/26/02 2:44:04 PM]

0304. Form Methods

• If you plan to use a form repeatedly, it's faster to hide and
show the form, rather than load and unload it.

Example of Form Display Capabilities

The following example code controls the startup of a program. It
loads and displays a splash screen, loads the first form, hides the
splash screen, and then displays the first form.

Sub Main()

frmSplashScreen.Show

Load frmFirstForm

frmSplashScreen.Hide

frmFirstForm.Show

End Sub

You can end execution of your program by unloading the last form in
your application or by using the End statement. The End statement
terminates execution of your application and unloads all forms from
memory.

Sub Form_Unload()

[Final code statements]

End

End Sub

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0304.%20Form%20Methods.htm (5 of 6) [6/26/02 2:44:04 PM]

0304. Form Methods

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0304.%20Form%20Methods.htm (6 of 6) [6/26/02 2:44:04 PM]

0305. Form Events

Forms support a number of events that fire at various times
throughout the life of the form and the life of the application. These
events include:

Initialize
The Initialize event occurs when an application creates an instance
of a form before the form is loaded or displayed. The code you place
in the Form_Initialize event procedure is therefore the first code that
gets executed when a form is created. In the initialization state, the
form exists as an object, but it has no window. The Initialize event
only occurs the first time a form is loaded, unless the form is set to
Nothing, as shown in the following example code:

Set frmCustomerInfo = Nothing

Load
The Load event fires each time a form loads. This happens when the
Load method is used, the Show method is used, or a control is
referenced on a form that has not yet been loaded.

Activate
The Activate event occurs when the form receives focus. As a user
changes from one form to another in a modeless environment, the
Activate event will fire.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0305.%20Form%20Events.htm (1 of 5) [6/26/02 2:44:06 PM]

0305. Form Events

GotFocus
A form receives a GotFocus event only if there are no controls on
the form capable of receiving the focus. Typically, you use a
GotFocus event procedure to specify the actions that occur when a
control or form first receives focus.

Note

If you add code to the form's Activate event, the GotFocus event will
not fire.

LostFocus
Like the GotFocus event, the LostFocus event will only fire if there
are no controls on the form that are capable of losing focus.

Deactivate
The Deactivate event occurs when the form loses focus.

Note

If you add code to the LostFocus event, the Deactivate event will not
fire.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0305.%20Form%20Events.htm (2 of 5) [6/26/02 2:44:06 PM]

0305. Form Events

QueryUnload
The QueryUnload event fires when the form receives a command to
unload. This event provides developers with the ability to evaluate
how the form received the request to unload and cancel the unload
process. The QueryUnload event will fire before the Unload event. If
the QueryUnload event cancels the unload request, the Unload event
will not fire.

Unload
The Unload event fires each time a form is unloaded from memory.
This occurs when an application ends, using the End statement, or
the form is explicitly unloaded with the Unload method.

Terminate
The only way to release all memory and resources is to unload the
form and then set all references to Nothing. Your form receives its
Terminate event just before it is destroyed (set to Nothing) or the
application ends. However, if the End statement is used, the
Terminate event will not fire.

Order of Execution

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0305.%20Form%20Events.htm (3 of 5) [6/26/02 2:44:06 PM]

0305. Form Events

The events listed above execute in a specific order. It is important to
understand this order when deciding where to place code that
initializes controls, prompts the user to save changes, or closes
database connections.

The following list describes the general flow of event execution:

Initialize (fires once when the form is first referenced)

Load (fires every time the form loads)

Activate (fires whenever the form is activated from within the
program)

GotFocus (fires only if no controls on the form can receive focus)

LostFocus (fires when focus changes to another form)

Deactivate (fires when the form in no longer active within the
program)

QueryUnload (fires when the form receives an unload command)

Unload (fires after the QueryUnload event)

Terminate (fires when the form is set to Nothing or the program
ends)

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0305.%20Form%20Events.htm (4 of 5) [6/26/02 2:44:06 PM]

0305. Form Events

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0305.%20Form%20Events.htm (5 of 5) [6/26/02 2:44:06 PM]

0306. Form Properties

As with any other objects, you can set form properties at design time
in the Properties window, or at run time by writing code.

Name
The default name for a new form is “Form” plus a unique integer. For
example, the first new Form object is Form1, the second is Form2,
and so on.

Because a form’s name is used to reference it in code, it is important
to set the Name property early in the development process,
preferably when you create the form. A form's Name property must
start with a letter; the name can include numbers and underline (_)
characters, but it cannot include punctuation or spaces.

Note Forms cannot have the same name as another public object,
such as Clipboard, Screen, or App. Although the Name property
setting can be a keyword, property name, or the name of another
object, this can create conflicts in your code.

Icon
The Icon property specifies the icon that appears when a form is
minimized. In Windows, the icon also appears in the title bar.

You set the Icon property at design time. Visual Basic supplies a
large library of icons for your applications, but you can use any file
with the extension .ico.

WindowState
The WindowState property determines how the form will appear
when displayed (normal, minimized, or maximized). You set the

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0306.%20Form%20Properties.htm (1 of 4) [6/26/02 2:44:09 PM]

0306. Form Properties

WindowState property at run time. Before a form is displayed, the
WindowState property is always set to vbNormal, regardless of its
initial setting.

To set the WindowState property, use the following syntax:

object.WindowState = value

The following table lists possible values for the WindowState
property.

Constant Setting Description

VbNormal 0 (Default) Normal size

VbMinimized 1 Minimized to an icon

VbMaximized 2 Enlarged to maximum size

The following example code maximizes frmCalculator:

frmCalculator.WindowState = vbMaximized

BorderStyle
The BorderStyle property controls the appearance of the form’s
border. This property also determines whether the user can resize,
minimize, or maximize the form.

The following table lists the BorderStyle property settings for a Form
object.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0306.%20Form%20Properties.htm (2 of 4) [6/26/02 2:44:09 PM]

0306. Form Properties

Constant Setting Description

vbBSNone 0 None (no border or border-related
elements).

vbFixedSingle 1 Can include Control menu box, title bar,
Maximize button, and Minimize button.
Resizable only using Maximize and
Minimize buttons.

vbSizable 2 Default) Resizable using any of the
optional border elements listed for
setting 1.

vbFixedDialog 3 Can include Control menu box and title
bar; cannot include Maximize or
Minimize buttons. Not resizable.

vbFixedToolWindow 4 Displays a nonsizable window with a
Close button and title bar text in a
reduced font size. The form does not
appear in the Windows 98 taskbar.

vbSizableToolWindow 5 Displays a sizable tool window with a
Close button and title bar text in a
reduced font size. The form does not
appear in the Windows 98 taskbar.

MaxButton and MinButton
The MaxButton and MinButton properties determine whether
standard Windows Maximize and Minimize buttons are displayed in

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0306.%20Form%20Properties.htm (3 of 4) [6/26/02 2:44:09 PM]

0306. Form Properties

the form’s title bar. Setting these properties has no effect unless the
BorderStyle property is set to 1, 2, or 3 (vbFixedSingle, vbSizable, or
vbFixedDialog).

ControlBox
The ControlBox property determines whether a standard Windows
control box appears on a form. When you set the ControlBox
property to True, you must also set the BorderStyle property to 1, 2,
or 3 (vbFixedSingle, vbSizable, or vbFixedDouble) to display the
control box.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0306.%20Form%20Properties.htm (4 of 4) [6/26/02 2:44:09 PM]

0401. Introduction

Type of Cotrols
Standard controls, ActiveX controls, and insertable objects. These
categories are described in the table below.

Type Description

Standard controls These controls are contained in Visual Basic.
Examples include the CommandButton and TextBox
controls. Also called intrinsic controls, standard
controls are always available from the Toolbox and
are the main focus of this chapter. These controls
are covered in the topic of Standard Controls in this
chapter.

ActiveX controls These controls are separate files with the .ocx
extension. These controls can be added to the
Toolbox. These controls are explained in details in
chapter 9. (Advance Active X control)

Insertable objects These are typically OLE objects such as a Microsoft
Excel Worksheet object. Insertable objects can be
added to the Toolbox and are covered briefly in the
topic Insertable Objects in this chapter and is
discussed in detail in Chapter 12. Win API, OLE,
DHTML.....

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0401.%20Introduction.htm [6/26/02 2:57:06 PM]

0402. Label and Text Box

Text Box

Special Properties Value

Locked =True / False i.e. If Text1.Locked = True then
user can not edit the text of text box

MaxLength Numeric value represents maximum char length
allowed user to type in the control

MultiLine =True / False i.e. if Text1.Multiline = True then
user text can navigate to next line in text box.

PasswordChar Char represents face of text typed in text box.
This is useful for showing Password in user field.

ScrollBar 0 - None, 1 - Horizontal, 2 - Vertical, 4 - Both.
The value it self indicates possible scrollbars in
text box. This property works only in environment
where Multiline property set to true for text box
control.

Special Events Details

Change () Fires when value of text box control get change
by user

GotFocus () Fires when text box get cursor into it

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0402.%20Label%20and%20Text%20Box.htm (1 of 4) [6/26/02 2:57:09 PM]

0402. Label and Text Box

Keypress (Keyascii as
integer)

Fires when user press any key to type in the text
box, it navigate with Ascii value of key being
pressed

MouseMove (Button
as integer, Shift as
integer, x as single, y
as single)

Fires when user moves mouse over the text box.

LostFocus () Fires when cursor comes out of text box.

Label

Special Properties Value

AutoSize = True / False i.e. Determines whether a control
is automatically resized to display its entire
contents.

BackStyle 0 - Transparent, 1 - Opaque i.e. indicates
background style for the label

RightToLeft = True / False i.e. Determines text display
direction

UseMnemonicn = True / False i.e. sets a value that specifies
whether an "&" in a caption of label defines
access key

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0402.%20Label%20and%20Text%20Box.htm (2 of 4) [6/26/02 2:57:09 PM]

0402. Label and Text Box

WordWrap = True / False i.e. Returns / sets a value that
determine whether a control expand to fit the
text in its caption.

Difference between Text Box and Label

Text Box Label

"text" is default property "caption" is default property

Control.text returns value of the
control

Control.caption returns value of the
control

can not expand to the size of
content automatically

can expand to the size of context
automatically using AutoSize
property

it is userful to get value from user it is useful to show information for
user

provides Key Board Events does not provides Key Board
Events

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0402.%20Label%20and%20Text%20Box.htm (3 of 4) [6/26/02 2:57:09 PM]

0402. Label and Text Box

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0402.%20Label%20and%20Text%20Box.htm (4 of 4) [6/26/02 2:57:09 PM]

0403. Picture Box and Image

Picture Box

Special Properties Value

AutoRedraw = True / False

if True then

Enables automatic repainting of PictureBox
control. Graphics and text are written to the
screen and to an image stored in memory. The
object doesn't receive Paint events; it's repainted
when necessary, using the image stored in
memory.

AutoSize = True/ False

if True then

Automatically resizes control to the size of
picture.

DrawMode = Number (1 to 16)

Returns or sets a value that determines the
appearance of output from graphics method or
the appearance of a Shape or Line control.

Default : <Object>.DrawMode = 13 - Copypen

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0403.%20Picture%20Box%20and%20Image.htm (1 of 8) [6/26/02 2:57:11 PM]

0403. Picture Box and Image

DrawStyle = Number (0 to 6)

Returns or sets a value that determines the line
style for output from graphics methods like Circle,
Line etc.

Default : <Object>.DrawStyle = 0 - Solid

DrawWidth =Number

sets the line width for output from graphics
methods.

FillColor = Value (Color value)

Sets the color used to fill in shapes, circles and
boxes created with the Circle and Line graphics
methods.

By default, FillColor is set to 0 (Black)

Here, any color function or color contast can be
used like vbRed, vbBlack or QBColor(0 to 15) or
RGB(R, G, B)

FillStyle = Number

Sets the pattern used to fill Shape controls as
well as circles and boxes created with the Circle
and Line graphics methods.

When FillStyle is set to 1 (Transparent), the
FillColor property is ignored. Value can be 0 to 7

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0403.%20Picture%20Box%20and%20Image.htm (2 of 8) [6/26/02 2:57:11 PM]

0403. Picture Box and Image

Picture = and picture file

sets picture file for the picture box.

ScaleMode sets a value indicating the unit of measurement
for coordinates of an picture box object when
using graphics methods or when positioning
controls.

ScaleHeight, ScaleWidth are related properties to
scalemode properties.

Special Events Details

Paint () Fires when value of text box control get change
by user

Resize () Fires when text box get cursor into it

MouseMove (Button
as integer, Shift as
integer, x as single, y
as single)

Fires when user moves mouse over the Picture
box. This events is most important to get
graphics method and work with graphics in
picture box.

Co-ordinates or argument remains same for all
the objects or controls.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0403.%20Picture%20Box%20and%20Image.htm (3 of 8) [6/26/02 2:57:11 PM]

0403. Picture Box and Image

Paint () A Paint event procedure is useful if you have
output from graphics methods in your code. With
a Paint procedure, you can ensure that such
output is repainted when necessary.

The Paint event is invoked when the Refresh
method is used. If the AutoRedraw property is set
to True, repainting or redrawing is automatic, so
no Paint events are necessary.

Resize () fires when size of an object changes.

Special Methods Details

Circle Draw circle on the object

Circle (X, Y) , radius

Cls Clear the picture box. i. e. erases graphics used
on the picture box

Line Draws a line on the picture box

Line (X1, Y1) - (X2, Y2) , Color, BF

B stand for Box, F stand for Fill

PaintPicture Draws the contents of a graphics file like *.bmp
on the picture box

object.PaintPicture picture, x1, y1

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0403.%20Picture%20Box%20and%20Image.htm (4 of 8) [6/26/02 2:57:11 PM]

0403. Picture Box and Image

Image

Special Properties Value

Picture = and picture file

sets picture file for the picture box.

Stretch = True / False

If Stretch is set to True, resizing the control also
resizes the graphic it contains.

Special Events Details

MouseMove (Button
as integer, Shift as
integer, x as single, y
as single)

Fires when user moves mouse over the Image
control.

Co-ordinates or argument remains same for all
the objects or controls.

Difference Between Picture Box and Image

Image Picture Box

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0403.%20Picture%20Box%20and%20Image.htm (5 of 8) [6/26/02 2:57:11 PM]

0403. Picture Box and Image

They don't support graphical
methods or the AutoRedraw and the
ClipControls properties.

They support graphical methods or
the AutoRedraw and the
ClipControls properties.

They can't work as containers, just
to hint at their biggest limitations.

They can work as controls
container. That why it is called
forms as form.

They load faster and consume less
memory and system resources.

They are heavy controls as it also
consume more memory and system
resources.

Image controls can load bitmaps
and JPEG and GIF images.

Picture Box support variety of file
formats like, BMP, DIB, WMF, EMF,
GIF, JPEG, ICO, and CUR files. To
know about full form for these
extensions click me.

Image controls don't expose the
AutoSize property because by
default they resize to display the
contained image.

PictureBox controls can have
AutoSize property by with they
resize them selves. That can be set
to True / False.

Image controls support a Stretch
property that, if True, resizes the
image (distorting it if necessary) to
fit the control. In a sense, the
Stretch property somewhat
remedies the lack of the
PaintPicture method for this control.

Picture Box controls don't expose
the Stretch property but they have
PaintPicture method and are much
more useful to generate vector
graphics.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0403.%20Picture%20Box%20and%20Image.htm (6 of 8) [6/26/02 2:57:11 PM]

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/..\01.%20Introduction%20to%20VB\0104.%20List%20the%20file%20types%20that%20can%20be%20included%20in%20a%20project.htm

0403. Picture Box and Image

LoadPicture

Picture1.Picture = LoadPicture("c:\windows\setup.bmp")

will load picture to the picture at run time. This function also work
with image control.

To unload picture from control use this line

Picture1.Picture = LoadPicture("")

OR

Set Picture1.Picture = Nothing

ZO0oMm......

you can zoom in to or reduce an image by loading it in an Image
control and then setting its Stretch property to True to change its
width and height:

' Load a bitmap.

Image1.Stretch = False

Image1.Picture = LoadPicture("c:\windows\setup.bmp")

' Reduce it by a factor of two.

Image1.Stretch = True

Image1.Move 0, 0, Image1.Width / 2, Image1.Width / 2

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0403.%20Picture%20Box%20and%20Image.htm (7 of 8) [6/26/02 2:57:11 PM]

0403. Picture Box and Image

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0403.%20Picture%20Box%20and%20Image.htm (8 of 8) [6/26/02 2:57:11 PM]

0404. Command Button

Command Button

Special Properties Value

Cancel = True / False

Only one CommandButton control on a form can
be the Cancel button. When the Cancel property
is set to True for one CommandButton, it's
automatically set to False for all other
CommandButton controls on the form. When a
CommandButton control's Cancel property
setting is True and the form is the active form, the
user can choose the CommandButton by clicking
it, pressing the ESC key, or pressing ENTER
when the button has the focus.

Caption = String

that represents name or user imformation on the
command for the use purpose.

adding an & character to associate a hot key with
the control.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0404.%20Command%20Button.htm (1 of 3) [6/26/02 2:57:14 PM]

0404. Command Button

Default Only one command button on a form can be the
default command button. When Default is set to
True for one command button, it's automatically
set to False for all other command buttons on the
form. When the command button's Default
property setting is True and its parent form is
active, the user can choose the command button
(invoking its Click event) by pressing ENTER.

DisablePicture The DisabledPicture property specifies a picture
object to display when the control (such as a
CommandButton) is disabled. The
DisabledPicture property is ignored unless the
Style property of the control is set to 1
(graphical).

DownPicture The DownPicture property refers to a picture
object that displays when the button is in the
down state. The DownPicture property is ignored
unless the Style property is set to 1 (graphical).

Picture Returns or sets a graphic or picture to be
displayed in a control.

Style Returns or sets a value indicating the display
type and behavior of the control. If you wish to
use picture to be displayed on the command
button you have to use Style property as 1 -
Graphical. By default it is 0 - standard.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0404.%20Command%20Button.htm (2 of 3) [6/26/02 2:57:14 PM]

0404. Command Button

SPECIAL

The only relevant CommandButton's run-time property is Value,
which sets or returns the state of the control (True if pressed, False
otherwise). In most cases, you don't need to query this property
because if you're inside a button's Click event you can be sure that
the button is being activated. The Value property is useful only for
programmatically clicking a button:

' This fires the button's Click event.

Command1.Value = True

The CommandButton control supports the usual set of keyboard and
mouse events (KeyDown, KeyPress, KeyUp, MouseDown,
MouseMove, MouseUp, but not the DblClick event) and also the
GotFocus and LostFocus events.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0404.%20Command%20Button.htm (3 of 3) [6/26/02 2:57:14 PM]

0405. Check Box, Option Button and Frame

Check Box

Special Properties Value

Caption = String

that represents name or user imformation on the
Checkl Box for the user purpose.

DisablePicture The DisabledPicture property specifies a picture
object to display when the control (such as a
Check Box) is disabled. The DisabledPicture
property is ignored unless the Style property of
the control is set to 1 (graphical).

DownPicture The DownPicture property refers to a picture
object that displays when the Check Box is in the
down state. The DownPicture property is ignored
unless the Style property is set to 1 (graphical).

Picture Returns or sets a graphic or picture to be
displayed in a control.

Style Returns or sets a value indicating the display
type and behavior of the control. If you wish to
use picture to be displayed on the Check Box you
have to use Style property as 1 - Graphical. By
default it is 0 - standard.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutoria...heck%20Box,%20Option%20Button%20and%20Frame.htm (1 of 7) [6/26/02 2:57:16 PM]

0405. Check Box, Option Button and Frame

Value = 0 - UnChecked (or)

= 1 - Checked (or)

= 2 - Grayed

CheckBox controls are useful when you want to offer your users a yes or
no, true or false choice. Anytime you click on this control, it toggles
between the yes state and the no state. This control can also be grayed
when the state of the CheckBox is unavailable, but you must manage that
state through code.

When you place a CheckBox control on a form, all you have to do,
usually, is set its Caption property to a descriptive string. You might
sometimes want to move the little check box to the right of its caption,
which you do by setting the Alignment property to 1-Right Justify, but in
most cases the default setting is OK. If you want to display the control in a
checked state, you set its Value property to 1-Checked right in the
Properties window, and you set a grayed state with 2-Grayed.

The only important event for CheckBox controls is the Click event, which
fires when either the user or the code changes the state of the control. In
many cases, you don't need to write code to handle this event. Instead,
you just query the control's Value property when your code needs to
process user choices. You usually write code in a CheckBox control's
Click event when it affects the state of other controls. For example, if the
user clears a check box, you might need to disable one or more controls
on the form and reenable them when the user clicks on the check box
again. This is how you usually do it (here I grouped all the relevant
controls in one frame named Frame1):

Private Sub Check1_Click()

file:///D|/JigneshDhol/VisualBasic/VB%20Tutoria...heck%20Box,%20Option%20Button%20and%20Frame.htm (2 of 7) [6/26/02 2:57:16 PM]

0405. Check Box, Option Button and Frame

 Frame1.Enabled = (Check1.Value = vbChecked)

End Sub

Note that Value is the default property for CheckBox controls, so you
can omit it in code. I suggest that you not do that, however, because
it would reduce the readability of your code.

Option Button

Special Properties Value

Caption = String

that represents name or user imformation on the
option button for the user purpose.

DisablePicture The DisabledPicture property specifies a picture
object to display when the control is disabled.
The DisabledPicture property is ignored unless
the Style property of the control is set to 1
(graphical).

DownPicture The DownPicture property refers to a picture
object that displays when the option button is in
the down state. The DownPicture property is
ignored unless the Style property is set to 1
(graphical).

file:///D|/JigneshDhol/VisualBasic/VB%20Tutoria...heck%20Box,%20Option%20Button%20and%20Frame.htm (3 of 7) [6/26/02 2:57:16 PM]

0405. Check Box, Option Button and Frame

Picture Returns or sets a graphic or picture to be
displayed in a control.

Style Returns or sets a value indicating the display
type and behavior of the control. If you wish to
use picture to be displayed on the option button
you have to use Style property as 1 - Graphical.
By default it is 0 - standard.

Value = True / False

if True then option button is checked else
unchecked

OptionButton controls are also known as radio buttons because of their
shape. You always use OptionButton controls in a group of two or more
because their purpose is to offer a number of mutually exclusive choices.
Anytime you click on a button in the group, it switches to a selected state
and all the other controls in the group become unselected.

Preliminary operations for an OptionButton control are similar to those
already described for CheckBox controls. You set an OptionButton
control's Caption property to a meaningful string, and if you want you can
change its Alignment property to make the control right aligned. If the
control is the one in its group that's in the selected state, you also set its
Valueproperty to True. (The OptionButton's Value property is a Boolean
value because only two states are possible.) Value is the default property
for this control.

At run time, you typically query the control's Value property to learn which
button in its group has been selected. Let's say you have three
OptionButton controls, named optWeekly, optMonthly, and optYearly. You
can test which one has been selected by the user as follows:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutoria...heck%20Box,%20Option%20Button%20and%20Frame.htm (4 of 7) [6/26/02 2:57:16 PM]

0405. Check Box, Option Button and Frame

If optWeekly.Value Then

 ' User prefers weekly frequency.

ElseIf optMonthly.Value Then

 ' User prefers monthly frequency.

ElseIf optYearly.Value Then

 ' User prefers yearly frequency.

End If

Strictly speaking, you can avoid the test for the last OptionButton
control in its group because all choices are supposed to be mutually
exclusive. But the approach I just showed you increases the code's
readability.

A group of OptionButton controls is often hosted in a Frame control.
This is necessary when there are other groups of OptionButton
controls on the form. As far as Visual Basic is concerned, all the
OptionButton controls on a form's surface belong to the same group
of mutually exclusive selections, even if the controls are placed at
the opposite corners of the window. The only way to tell Visual Basic
which controls belong to which group is by gathering them inside a
Frame control. Actually, you can group your controls within any
control that can work as a container—PictureBox, for example—but
Frame controls are often the most reasonable choice.

Difference Between Option Button and Check

file:///D|/JigneshDhol/VisualBasic/VB%20Tutoria...heck%20Box,%20Option%20Button%20and%20Frame.htm (5 of 7) [6/26/02 2:57:16 PM]

0405. Check Box, Option Button and Frame

Box

Check Box Option Button

This control exposes three value for
its state. That are named as 0 -
UnChecked, 1 - Checked, 2 -
Grayed.

This control exposes two possibility
for its value property. That is True if
selected and False if not.

This can be used to give multiple
options to the user.

This can be used when user has
only one option.

There is no need of grouping
objects, infact one can use this to
give information in proper manner.

more than one option button can be
selected with the use of Grouping
objects like Frame, or Picture Box.

Frame

Special Properties Value

BorderStyle = 0 - None

= 1 - Fixed Single

Visible = True / False

If True then Frame will not be visible while in run
mode.

Frame controls are similar to Label controls in that they can serve as
captions for those controls that don't have their own. Moreover,

file:///D|/JigneshDhol/VisualBasic/VB%20Tutoria...heck%20Box,%20Option%20Button%20and%20Frame.htm (6 of 7) [6/26/02 2:57:16 PM]

0405. Check Box, Option Button and Frame

Frame controls can also (and often do) behave as containers and
host other controls. In most cases, you only need to drop a Frame
control on a form and set its Caption property. If you want to create a
borderless frame, you can set its BorderStyle property to 0-None.

Controls that are contained in the Frame control are said to be child
controls. Moving a control at design time over a Frame control—or
over any other container, for that matter—doesn't automatically
make that control a child of the Frame control. After you create a
Frame control, you can create a child control by selecting the child
control's icon in the Toolbox and drawing a new instance inside the
Frame's border. Alternatively, to make an existing control a child of a
Frame control, you must select the control, press Ctrl+X to cut it to
the Clipboard, select the Frame control, and press Ctrl+V to paste
the control inside the Frame. If you don't follow this procedure and
you simply move the control over the Frame, the two controls remain
completely independent of each other, even if the other control
appears in front of the Frame control.

Frame controls, like all container controls, have two interesting
features. If you move a Frame control, all the child controls go with
it. If you make a container control disabled or invisible, all its child
controls also become disabled or invisible. You can exploit these
features to quickly change the state of a group of related controls.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutoria...heck%20Box,%20Option%20Button%20and%20Frame.htm (7 of 7) [6/26/02 2:57:16 PM]

0406. Combo Box and List Box

Combo Box

Special Properties Value

ItemData Returns or sets a specific number for each item
in a ComboBox control.

List Returns or sets the items contained in a control's
list portion. The list is a string array in which each
element is a list item. Available at design time for
ComboBox controls through the Properties
window.

Locked For the ComboBox control, when Locked is set to
True, the user cannot change any data, but can
highlight data in the text box and copy it. This
property does not affect programmatic access to
the ComboBox.

Sorted = True / False

Returns a value indicating whether the elements
of a control are automatically sorted
alphabetically.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0406.%20Combo%20Box%20and%20List%20Box.htm (1 of 15) [6/26/02 2:57:19 PM]

0406. Combo Box and List Box

Style = 0 - Dropdown Combo

= 1 - Simple Combo

= 2 - Dropdown list

Returns or sets a value indicating the display
type and behavior of the control. Read only at run
time.

Text Returns value available on the combo in
selection

Special Events Details

Scroll () For a ComboBox control, this event occurs only
when the scrollbars in the dropdown portion of
the control are manipulated.

Special Methods Details

AddItem If you supply a valid value for index, item is
placed at that position within the object. If index is
omitted, item is added at the proper sorted
position (if the Sorted property is set to True) or
to the end of the list (if Sorted is set to False).

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0406.%20Combo%20Box%20and%20List%20Box.htm (2 of 15) [6/26/02 2:57:19 PM]

0406. Combo Box and List Box

Clear Clears the contents of a ComboBox.

A ComboBox control bound to a Data control
doesn't support the Clear method.

RemoveItem Removes an item from a ComboBox control.

A ComboBox that is bound to a Data control
doesn't support the RemoveItem method.

FIGURE

You can create ComboBox controls that automatically sort their
items using the Sorted property, you can add items at design time
using the List item in the Properties window, and you can set a
ComboBox control's IntegralHeight property as your user interface
dictates. ComboBox controls don't support multiple columns and

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0406.%20Combo%20Box%20and%20List%20Box.htm (3 of 15) [6/26/02 2:57:19 PM]

0406. Combo Box and List Box

multiple selections, so you don't have to deal with the Column,
MultiSelect, Select, and SelCount properties and the ItemCheck
event.

The ComboBox control is a sort of mixture between a ListBox and a
TextBox control in that it also includes several properties and events
that are more typical of the latter, such as the SelStart, SelLength,
SelText, and Locked properties and the KeyDown, KeyPress, and
KeyUp events.

The most characteristic ComboBox control property is Style, which
lets you pick one among the three styles available, as you can see in
Figure given above. When you set Style = 0-DropDown Combo, what
you get is the classic combo; you can enter a value in the edit area
or select one from the drop-down list. The setting Style = 1-Simple
Combo is similar, but the list area is always visible so that in this
case you really have a compounded TextBox plus ListBox control.
By default, Visual Basic creates a control that's only tall enough to
show the edit area, and you must resize it to make the list portion
visible. Finally, Style = 2-Dropdown List suppresses the edit area and
gives you only a drop-down list to choose from.

When you have a ComboBox control with Style = 0-Dropdown
Combo or 2-Dropdown List, you can learn when the user is opening
the list portion by trapping the DropDown event. For example, you
can fill the list area just one instant before the user sees it (a sort of
just-in-time data loading):

Private Sub Combo1_DropDown()

 Dim i As Integer

 ' Do it only once.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0406.%20Combo%20Box%20and%20List%20Box.htm (4 of 15) [6/26/02 2:57:19 PM]

0406. Combo Box and List Box

 If Combo1.ListCount = 0 Then

 For i = 1 To 100

 Combo3.AddItem "Item
#" & i

 Next

 End If

End Sub

The ComboBox control supports the Click and DblClick events, but
they relate only to the list portion of the control. More precisely, you
get a Click event when the user selects an item from the list, and you
get a DblClick event only when an item in the list is double-clicked.
The latter can occur only when Style = 1-Simple Combo, though, and
you'll never get this event for other types of ComboBox controls.

ComboBox controls with Style = 1-Simple Combo possess an
intriguing feature, called extended matching. As you type a string,
Visual Basic scrolls the list portion so that the first visible item in the
list area matches the characters in the edit area.

List Box

Special Properties Value

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0406.%20Combo%20Box%20and%20List%20Box.htm (5 of 15) [6/26/02 2:57:19 PM]

0406. Combo Box and List Box

ItemData Returns or sets a specific number for each item
in a List Box control.

List Returns or sets the items contained in a control's
list portion. The list is a string array in which each
element is a list item. Available at design time for
ListBox controls through the Properties window.

MultiSelect = 0 - None

= 1 - Simple

= 2 - Extended

Explain in details below

Sorted = True / False

Returns a value indicating whether the elements
of a control are automatically sorted
alphabetically.

Style = 0 - Standard

= 1 - Checked

Returns or sets a value indicating the display
type and behavior of the control. Read only at run
time.

Special Events Details

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0406.%20Combo%20Box%20and%20List%20Box.htm (6 of 15) [6/26/02 2:57:19 PM]

0406. Combo Box and List Box

Scroll () For a List Box control, this event occurs only
when the scrollbars in the dropdown portion of
the control are manipulated.

Special Methods Details

AddItem If you supply a valid value for index, item is
placed at that position within the object. If index is
omitted, item is added at the proper sorted
position (if the Sorted property is set to True) or
to the end of the list (if Sorted is set to False).

Clear Clears the contents of a List Box.

A List Box control bound to a Data control doesn't
support the Clear method.

RemoveItem Removes an item from a List Box control.

A List Box that is bound to a Data control doesn't
support the RemoveItem method.

FIGURE

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0406.%20Combo%20Box%20and%20List%20Box.htm (7 of 15) [6/26/02 2:57:19 PM]

0406. Combo Box and List Box

you set the Sorted attribute to True to create ListBox controls that
automatically sort their items in alphabetical order. By acting on the
Columns property, you create a different type of list box, with
several columns and a horizontal scroll bar, you can't change the
style of the ListBox control while the program is running.

If you know at design time which items must appear in the ListBox
control, you can save some code and enter the items right in the
Properties window, in the List property mini-editor

Both ListBox and ComboBox controls expose the AddItem method,
which lets you add items when the program is executing. You
usually use this method in the Form_Load event procedure:

Private Sub Form_Load()

 List1.AddItem "First"

 List1.AddItem "Second"

 List1.AddItem "Third"

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0406.%20Combo%20Box%20and%20List%20Box.htm (8 of 15) [6/26/02 2:57:19 PM]

0406. Combo Box and List Box

End Sub

TIP

If you want to load many items in a list box but don't want to create
an array, you can resort to Visual Basic's Choose function, as
follows:

For i = 1 To 5

 List1.AddItem Choose(i, "America", "Europe", "Asia", "Africa",
"Australia")

Next

Sometimes you need to add an item in a given position, which you
do by passing a second argument to the AddItem method. (Note that
indexes are zero-based.)

' Add at the very beginning of the list.

List1.AddItem "Zero", 0

Removing items is easy with the RemoveItem or Clear methods:

' Remove the first item in the list.

List1.RemoveItem 0

' Quickly remove all items (no need for a For...Next loop).

List1.Clear

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0406.%20Combo%20Box%20and%20List%20Box.htm (9 of 15) [6/26/02 2:57:19 PM]

0406. Combo Box and List Box

The most obvious operation to be performed at run time on a filled
ListBox control is to determine which item has been selected by the
user. The ListIndex property returns the index of the selected item
(zero-based), while the Text property returns the actual string stored
in the ListBox. The ListIndex property returns -1 if the user hasn't
selected any element yet, so you should test for this condition first:

If List1.ListIndex = -1 Then

 MsgBox "No items selected"

Else

 MsgBox "User selected " & List1.Text & " (#" & List1.ListIndex & ")"

End If

The ListCount property returns the number of items in the control.
You can use it with the List property to enumerate them:

For i = 0 To List1.ListCount -1

 Print "Item #" & i & " = " & List1.List(i)

Next

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0406.%20Combo%20Box%20and%20List%20Box.htm (10 of 15) [6/26/02 2:57:19 PM]

0406. Combo Box and List Box

Difference Between Combo Box and List Box
Combo Box List Box

ComboBox controls don't support
multiple columns and multiple
selections

Combo box don't have to deal with
the Column, MultiSelect, Select, and
SelCount properties and the
ItemCheck event.

Locked

 Multiselect

Example

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0406.%20Combo%20Box%20and%20List%20Box.htm (11 of 15) [6/26/02 2:57:19 PM]

0406. Combo Box and List Box

The logic behind your user interface might require that you monitor
the DblClick event as well. As a general rule, double-clicking on a
ListBox control's item should have the same effect as selecting the
item and then clicking on a push button (often the default push
button on the form). Take, for example, the mutually exclusive
ListBox controls shown in Figure 3-8, a type of user interface that
you see in many Windows applications. Implementing this structure
in Visual Basic is straightforward:

Private Sub cmdMove_Click()

 ' Move one item from left to right.

 If lstLeft.ListIndex >= 0 Then

 lstRight.AddItem lstLeft.Text

 lstLeft.RemoveItem lstLeft.ListIndex

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0406.%20Combo%20Box%20and%20List%20Box.htm (12 of 15) [6/26/02 2:57:19 PM]

0406. Combo Box and List Box

 End If

End Sub

Private Sub cmdMoveAll_Click()

 ' Move all items from left to right.

 Do While lstLeft.ListCount

 lstRight.AddItem lstLeft.List(0)

 lstLeft.RemoveItem 0

 Loop

End Sub

Private Sub cmdBack_Click()

 ' Move one item from right to left.

 If lstRight.ListIndex >= 0 Then

 lstLeft.AddItem lstRight.Text

 lstRight.RemoveItem lstRight.ListIndex

 End If

End Sub

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0406.%20Combo%20Box%20and%20List%20Box.htm (13 of 15) [6/26/02 2:57:19 PM]

0406. Combo Box and List Box

Private Sub cmdBackAll_Click()

 ' Move all items from right to left.

 Do While lstRight.ListCount

 lstLeft.AddItem lstRight.List(0)

 lstRight.RemoveItem 0

 Loop

End Sub

Private Sub lstLeft_DblClick()

 ' Simulate a click on the Move button.

 cmdMove.Value = True

End Sub

Private Sub lstRight_DblClick()

 ' Simulate a click on the Back button.

 cmdBack.Value = True

End Sub

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0406.%20Combo%20Box%20and%20List%20Box.htm (14 of 15) [6/26/02 2:57:19 PM]

0406. Combo Box and List Box

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0406.%20Combo%20Box%20and%20List%20Box.htm (15 of 15) [6/26/02 2:57:19 PM]

0407. Scroll Bars

Scroll Bars

• Horizontal Scroll Bar

• Vertical Scroll Bar

We have two category in Visual Basic as far as scroll bar is concern.
The difference between Vertical and Horizontal Scroll Bar is the lay
out only.

Special Properties Value

LargeChange

Min

Max

SmallChange

Value

Special Events Details

Scroll ()

few properties: Min and Max represent the valid range of values,

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0407.%20Scroll%20Bars.htm (1 of 3) [6/26/02 2:57:21 PM]

0407. Scroll Bars

SmallChange is the variation in value you get when clicking on the
scroll bar's arrows, and LargeChange is the variation you get when
you click on either side of the scroll bar indicator.

The most important run-time property is Value, which always returns
the relative position of the indicator on the scroll bar. By default, the
Min value corresponds to the leftmost or upper end of the control:

' Move the indicator near the top (or left) arrow.

VScroll1.Value = VScroll1.Min

' Move the indicator near the bottom (or right) arrow.

VScroll1.Value = VScroll1.Max

There are two key events for scrollbar controls: the Change event
fires when you click on the scroll bar arrows or when you drag the
indicator; the Scroll event fires while you drag the indicator.

' Show the current scroll bar's value.

Private VScroll1_Change()

 Label1.Caption = VScroll1.Value

End Sub

Private VScroll1_Scroll()

 Label1.Caption = VScroll1.Value

End Sub

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0407.%20Scroll%20Bars.htm (2 of 3) [6/26/02 2:57:21 PM]

0407. Scroll Bars

.they support both the TabIndex and TabStop properties. If you don't
want the user to accidentally move the input focus on a scrollbar
control when he or she presses the Tab key, you must explicitly set
its TabStop property to False. When a scrollbar control has the
focus, you can move the indicator using the Left, Right, Up, Down,
PgUp, PgDn, Home, and End keys.

Example

RGB function example

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0407.%20Scroll%20Bars.htm (3 of 3) [6/26/02 2:57:21 PM]

0408. Timer

Timer

Special Properties Value

Enabled

Interval

Special Events Details

Timer ()

A Timer control is invisible at run time, and its purpose is to send a
periodic pulse to the current application. You can trap this pulse by
writing code in the Timer's Timer event procedure and take
advantage of it to execute a task in the background or to monitor a
user's actions. This control exposes only two meaningful properties:
Interval and Enabled. Interval stands for the number of milliseconds
between subsequent pulses (Timer events), while Enabled lets you
activate or deactivate events. When you place the Timer control on a
form, its Interval is 0, which means no events. Therefore, remember
to set this property to a suitable value in the Properties window or in
the Form_Load event procedure:

Private Sub Form_Load()

 Timer1.Interval = 500 ' Fire two Timer events per second.

End Sub

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0408.%20Timer.htm (1 of 3) [6/26/02 2:57:23 PM]

0408. Timer

CAUTION

--

 You must be careful not to write a lot of code in the Timer event
procedure because this code will be executed at every pulse and
therefore can easily degrade your application's performance. Just as
important, never execute a DoEvents statement inside a Timer event
procedure because you might cause the procedure to be reentered,
especially if the Interval property is set to a small value and there's a
lot of code inside the procedure.

Timer controls are often useful for updating status information on a
regular basis. For example, you might want to display on a status
bar a short description of the control that currently has the input
focus. You can achieve that by writing some code in the GotFocus
event for all the controls on the form, but when you have dozens of
controls this will require a lot of code (and time). Instead, at design
time load a short description for each control in its Tag property, and
then place a Timer control on the form with an Interval setting of 500.
This isn't a time-critical task, so you can use an even larger value.
Finally add two lines of code to the control's Timer event:

Private Sub Timer1_Timer()

 On Error Resume Next

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0408.%20Timer.htm (2 of 3) [6/26/02 2:57:23 PM]

0408. Timer

 lblStatusBar.Caption = ActiveControl.Tag

End Sub

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0408.%20Timer.htm (3 of 3) [6/26/02 2:57:23 PM]

0409. Drive, Dir and File List Box

Drive List Box

Special Events Details

Change ()

Scroll ()

Dir List Box

Special Events Details

Change ()

Scroll ()

File List Box

Special Properties Value

Archive

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0409.%20Drive,%20Dir%20and%20File%20List%20Box.htm (1 of 5) [6/26/02 2:57:25 PM]

0409. Drive, Dir and File List Box

Hidden

MultiSelect

Normal

Pattern

ReadOnly

System

Special Events Details

PathChange ()

PatternChange ()

Scroll ()

the DriveListBox control is a combobox-like control that's
automatically filled with your drive's letters and volume labels. The
DirListBox is a special list box that displays a directory tree. The
FileListBox control is a special-purpose ListBox control that
displays all the files in a given directory,

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0409.%20Drive,%20Dir%20and%20File%20List%20Box.htm (2 of 5) [6/26/02 2:57:25 PM]

0409. Drive, Dir and File List Box

These controls often work together on the same form; when the user
selects a drive in a DriveListBox, the DirListBox control is updated
to show the directory tree on that drive. When the user selects a path
in the DirListBox control, the FileListBox control is filled with the list
of files in that directory. These actions don't happen automatically,
however—you must write code to get the job done.

After you place a DriveListBox and a DirListBox control on a form's
surface, you usually don't have to set any of their properties; in fact,
these controls don't expose any special property, not in the
Properties window at least. The FileListBox control, on the other
hand, exposes one property that you can set at design time—the
Pattern property. This property indicates which files are to be shown
in the list area: Its default value is *.* (all files), but you can enter
whatever specification you need, and you can also enter multiple
specifications using the semicolon as a separator. You can also set
this property at run time, as in the following line of code:

File1.Pattern = "*.txt;*.doc;*.rtf"

After these preliminary steps, you're ready to set in motion the chain
of events. When the user selects a new drive in the DriveListBox
control, it fires a Change event and returns the drive letter (and
volume label) in its Drive property. You trap this event and set the
DirListBox control's Path property to point to the root directory of
the selected drive:

Private Sub Drive1_Change()

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0409.%20Drive,%20Dir%20and%20File%20List%20Box.htm (3 of 5) [6/26/02 2:57:25 PM]

0409. Drive, Dir and File List Box

 ' The Drive property also returns the volume label, so trim it.

 Dir1.Path = Left$(Drive1.Drive, 1) & ":\"

End Sub

When the user double-clicks on a directory name, the DirListBox
control raises a Change event; you trap this event to set the
FileListBox's Path property accordingly:

Private Sub Dir1_Change()

 File1.Path = Dir1.Path

End Sub

Finally, when the user clicks on a file in the FileListBox control, a
Click event is fired , and you can query its Filename property to learn
which file has been selected. Note how you build the complete path:

The DirListBox and FileListBox controls support most of the
properties typical of the control they derive from—the ListBox
control—including the ListCount and the ListIndex properties and
the Scroll event. The FileListBox control supports multiple selection;
hence you can set its MultiSelect property in the Properties window
and query the SelCount and Selected properties at run time.

The FileListBox control also exposes a few custom Boolean
properties, Normal, Archive, Hidden, ReadOnly, and System, which
permit you to decide whether files with these attributes should be

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0409.%20Drive,%20Dir%20and%20File%20List%20Box.htm (4 of 5) [6/26/02 2:57:25 PM]

0409. Drive, Dir and File List Box

listed. (By default, the control doesn't display hidden and system
files.) This control also supports a couple of custom events,
PathChange and PatternChange, that fire when the corresponding
property is changed through code.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0409.%20Drive,%20Dir%20and%20File%20List%20Box.htm (5 of 5) [6/26/02 2:57:25 PM]

0410. Shape and Line

Line

Special Properties Value

BorderColor the color of the line

BorderStyle

BorderWidth

DrawMode

X1

Y1

X2

Y2

Special Events Details

It poses not events

The Line control is a decorative control whose only purpose is let
you draw one or more straight lines at design time, instead of
displaying them using a Line graphical method at run time. This
control exposes a few properties whose meaning should sound
familiar to you by now: BorderColor (the color of the line),

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0410.%20Shape%20and%20Line.htm (1 of 3) [6/26/02 2:57:27 PM]

0410. Shape and Line

BorderStyle (the same as a form's DrawStyle property), BorderWidth
(the same as a form's DrawWidth property), and DrawMode. While
the Line control is handy, remember that using a Line method at run
time is usually better in terms of performance.

Here X1, Y1 are line starting co-ordinates and X2, Y2 are line
termination co-ordinates. Line control can be used to generate
graphic on the application. But same time graphic function such as
Line (X1, Y1) - (X2, Y2) , Color, BF is much faster and better to
generate line at run time.

Shape

Special Properties Value

BackStyle = 0 - Transaparent

= 1 - Opaque

BorderColor

BorderStyle = 0 - Transparent

= 1 - Solid

BorderWidth

FillColor

FillStyle

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0410.%20Shape%20and%20Line.htm (2 of 3) [6/26/02 2:57:27 PM]

0410. Shape and Line

Shape display six basic shapes: Rectangle, Square,
Oval, Circle, Rounded Rectangle, and Rounded
Square

Special Events Details

It poses not events

In a sense, the Shape control is an extension of the Line control. It
can display six basic shapes: Rectangle, Square, Oval, Circle,
Rounded Rectangle, and Rounded Square. It supports all the Line
control's properties and a few more: BorderStyle (0-Transparent, 1-
Solid), FillColor, and FillStyle (the same as a form's properties with
the same names). The same performance considerations can be
pointed out for the Line control apply to the Shape control. It is
better to generate Graphics on the form with the use of Graphic
functions like Line, Circle, etc. They are faster and Much more
different because they are Vector graphics.

To know more about Graphics Click me.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0410.%20Shape%20and%20Line.htm (3 of 3) [6/26/02 2:57:27 PM]

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/..\06.%20Functions\0610.%20Graphics%20with%20VB.htm

0501. Introduction

Dialog boxes
are a special type of form object that you can create in one of three
ways:

§ Predefined dialog boxes can be created from code using the
MsgBox or InputBox functions.

§ Custom dialog boxes can be created using a standard form
or by customizing an existing dialog box.

§ Standard dialog boxes, such as Print and File Open, can be
created using the CommonDialog control.

In Windows-based applications, dialog boxes are used to prompt the
user for data the application needs before continuing or to give
information to the user.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0501.%20Introduction.htm [6/26/02 3:09:37 PM]

0502. Predefined Dialog Box

Message Box
The MsgBox function uses the following syntax:

MsgBox(prompt [, buttons] [, title] [, helpFile, context])

The arguments for the MsgBox function are described in the
following table.

Argument Description

prompt Text that contains message to the user.

buttons Determines the number of and type of message box
buttons as well as the type of symbol that appears on the
message box.For more information about using MsgBox
function constants, search for "MsgBox arguments" in
MSDN Help.

title The text that appears in the title bar of the message box.

helpFile A string that identifies the Help file to use to provide
context-sensitive Help for the dialog box. If helpfile is
provided, context must also be provided.

context Numeric expression that identifies the specific topic in the
Help file that appears. If context is provided, helpfile must
also be provided.

Note : Any arguments not enclosed in square brackets are required.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0502.%20Predefined%20Dialog%20Box.htm (1 of 7) [6/26/02 3:09:40 PM]

0502. Predefined Dialog Box

You must supply a value for these arguments. Arguments that are
enclosed in brackets are optional. If values are not supplied for
these arguments, Visual Basic will use the default value. The
following instruction shows a simple message box that is generated
by the MsgBox function.

MsgBox "This illustration shows a simple message box that is
generated by the MsgBox function.",vbOkOnly + vbInformation,
"eBookMark"

Often the MsgBox function is used to get a simple response from the
user. You can assign the value returned by the MsgBox function to a
variable, and then write code to handle the response.

Fig. 2 can be treated with example as

Dim strMsg As String

Dim strTitle As String

Dim lngStyle As Long

Dim intResponse As Integer

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0502.%20Predefined%20Dialog%20Box.htm (2 of 7) [6/26/02 3:09:40 PM]

0502. Predefined Dialog Box

strMsg = "Do you want to continue?"

lngStyle = vbYesNo + vbQuestion + vbDefaultButton2

strTitle = "MsgBox Demonstration"

intResponse = MsgBox(strMsg, lngStyle, strTitle)

If intResponse = vbYes Then

 'User chose Yes button

Else

 'User chose No button

End If

MsgBox () constants

Constant Value Description

vbOkOnly 0 Display OK button only

vbOkCancel 1 Display OK and Cancel buttons

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0502.%20Predefined%20Dialog%20Box.htm (3 of 7) [6/26/02 3:09:40 PM]

0502. Predefined Dialog Box

vbAbortRetryIgnore 2 Display Abort, Retry and Ignore
buttons

vbYesNoCancel 3 Display Yes, No and Cancel buttons

vbYesNo 4 Display Yes and No Buttons

vbRetryCancel 5 Display Retry and Cancel Buttons

vbCritical 16 Display critical message icon

vbQuestion 32 Display Warning Query icon

vbExclamation 48 Display warning message icon

vbInformation 64 Display information Message icon

vbDefaultButton1 0 First Button is deafult

vbDefaultButton2 256 Second Button is deafult

vbDefaultButton3 512 Third Button is deafult

vbDefaultButton4 768 Fourth Button is deafult

vbApplicationModel 0 Application modal; the user must
respond to the message box before
continuing work in the current
application

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0502.%20Predefined%20Dialog%20Box.htm (4 of 7) [6/26/02 3:09:40 PM]

0502. Predefined Dialog Box

vbSystemModal 4096 System modal; all applications are
suspended until the user responds to
the message box

vbMsgBoxHelpButton 16384 Adds Help button to the message box

vbMsgBoxSetForeground 65536 Specifies the message box window
as the foreground window

vbMsgBoxRight 524288 Text is right-aligned

vbMsgBoxRtlReading 1048576 Specifies text should appear as right -
to - left reading on Hebrew and Arabic
system

MsgBox () return values

Constant Value Description

vbOk 1 OK

vbCancel 2 Cancel

vbAbort 3 Abort

vbRetry 4 Retry

vbIngore 5 Ignore

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0502.%20Predefined%20Dialog%20Box.htm (5 of 7) [6/26/02 3:09:40 PM]

0502. Predefined Dialog Box

vbYes 6 Yes

vbNo 7 No

Input Box
Input boxes are an easy way for you to ask the user for input that
can't be answered simply by clicking a button.

MyValue = InputBox ("This illustration shows Input box that is
generated by the Input Box function.", "eBookMark", "Default
Value")

 below is a sintex for input box :

InputBox(prompt[, title] [, default] [, xPos] [, yPos] [, helpFile,
context])

Note

For user input that requires no more than clicking a button, use the
MsgBox function. When using the InputBox function, there is little
control over the components of the dialog box. Only the text in the
title bar, the command prompt displayed to the user, the position of
the dialog box on the screen, and whether or not the dialog box
displays a Help button can be changed. The MsgBox function
provides more control over the appearance of the dialog box.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0502.%20Predefined%20Dialog%20Box.htm (6 of 7) [6/26/02 3:09:40 PM]

0502. Predefined Dialog Box

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0502.%20Predefined%20Dialog%20Box.htm (7 of 7) [6/26/02 3:09:40 PM]

0503. Customized dialog boxes

Custom dialog boxes
User can create own dialog boxes which can be used as and when
required are called custom dialog boxes. Visual Basic navigates with
some pre-designed dialog boxes which can be used as custom
dialog boxes. These dialog boxes can be viewed in Template folder
and even one can add more forms or other objects of own choice in
the same folder. Here are some tips for developing a custom dialog
box.

Control Property Value (suggested)

Form Border Style 3 - Fixed Dialog

 ControlBox False

 HelpContentId 0

 Moveable False

 StartUpPosition 1 - Center Owner

2 - Center Screen

Command Button Cancel True

 Default True

Text Box PasswordChar *

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0503.%20Customized%20dialog%20boxes.htm (1 of 7) [6/26/02 3:09:43 PM]

0503. Customized dialog boxes

Here are some examples of custom dialog boxes which navigates
with Visual Basic :

• About Screen

Fig. 1 shows about screen is useful for showing application related
details.

• Web Browser

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0503.%20Customized%20dialog%20boxes.htm (2 of 7) [6/26/02 3:09:43 PM]

0503. Customized dialog boxes

Fig. 2 represents Web browser and holds all the features of Internet
Explorer.

• Dialog Screen

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0503.%20Customized%20dialog%20boxes.htm (3 of 7) [6/26/02 3:09:43 PM]

0503. Customized dialog boxes

Fig. 3 can be used to generate custom dialog box

• Log in Dialog

Fig. 4 is the same screen which people use for getting user identification
in routine applications.

• Splash Screen

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0503.%20Customized%20dialog%20boxes.htm (4 of 7) [6/26/02 3:09:43 PM]

0503. Customized dialog boxes

Fig. 5 is company and product representation screen and is called as
Splash Screen.

• Tip of the Day

Fig. 6 shows Tips as and when application starts.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0503.%20Customized%20dialog%20boxes.htm (5 of 7) [6/26/02 3:09:43 PM]

0503. Customized dialog boxes

• ODBC Log in

Fig. 7 To connect ODBC data source on requires more code writting,
if this screen is not there available in Templates.

• Options Dialog

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0503.%20Customized%20dialog%20boxes.htm (6 of 7) [6/26/02 3:09:43 PM]

0503. Customized dialog boxes

Fig. 8 is useful for represent multi control form in single form with
grouped data collection tabs, is say option dialog box.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0503.%20Customized%20dialog%20boxes.htm (7 of 7) [6/26/02 3:09:43 PM]

0504. Standard dialog boxes

Standard dialog boxes
The CommonDialog control provides an easy and convenient way to
invoke the Color, Font, Printer, FileOpen, and FileSave Windows
common dialog boxes. This control exposes only properties and
methods—no events. The control is invisible during the execution,
so it doesn't support properties such as Left, Visible, or TabIndex.
This control is embedded in the ComDlg32.ocx file, which has to be
distributed with any Visual Basic application that uses it.

Following figure shows OCX control name and also shows control in
Toolbar (Last Control)

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0504.%20Standard%20dialog%20boxes.htm (1 of 12) [6/26/02 3:09:45 PM]

0504. Standard dialog boxes

One of the few properties that can have the same meaning
regardless of which common dialog box you're displaying is
CancelError. If this property is True, an end user closing the dialog
box using the Cancel key causes error 32755 (equal to the constant
cdlCancel) to be raised in the calling program. The CommonDialog
control includes intrinsic constants for all the errors that can be
generated at run time. All common dialog boxes also share a few
properties related to help support. You can display a Help button in
the common dialog box and tell the CommonDialog control what
page in what help file must be displayed when the user clicks the
Help button. HelpFile is the complete name of the help file,
HelpContext is the context ID of the requested page, and
HelpCommand is the action that must be performed when the button
is clicked. (It's usually assigned the value 1-cdlHelpContext.) Don't
forget that to actually display the Help button, you must set a bit in
the Flags property. The position of this bit varies with the particular
common dialog box, for example:

' Show a Help button.

CommonDialog1.HelpFile = "F:\vbprogs\DlgMaste\Tdm.hlp"

CommonDialog1.HelpContext = 12

CommonDialog1.HelpCommand = cdlHelpContext

' The value for the Flags property depends on the dialog.

If ShowColorDialog Then

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0504.%20Standard%20dialog%20boxes.htm (2 of 12) [6/26/02 3:09:45 PM]

0504. Standard dialog boxes

 CommonDialog1.Flags = cdlCCHelpButton

 CommonDialog1.ShowColor

ElseIf ShowFontDialog Then

 CommonDialog1.Flags = cdlCFHelpButton

 CommonDialog1.ShowFont

Else

 ' And so on

End If

The CommonDialog control exposes six methods: ShowColor,
ShowFont, ShowPrinter, ShowOpen, ShowSave, and ShowHelp.
Each method displays a different common dialog box, as explained
in the following sections.

Open Dialog Box

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0504.%20Standard%20dialog%20boxes.htm (3 of 12) [6/26/02 3:09:45 PM]

0504. Standard dialog boxes

Following code shows how to display open dialog box with multiple
file(s) open option

 CD.Filter = "All files (*.*)|*.*|" & Filter

 CD.FilterIndex = 1

 CD.Flags = cdlOFNAllowMultiselect Or cdlOFNFileMustExist
Or _

 cdlOFNExplorer

 CD.DialogTitle = "Select one or more files"

 CD.Filename = ""

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0504.%20Standard%20dialog%20boxes.htm (4 of 12) [6/26/02 3:09:45 PM]

0504. Standard dialog boxes

 ' Exit if user presses Cancel.

 CD.CancelError = True

 CD.ShowOpen

Save Dialog Box

Figure shows save dialog box. Workes almost same like open dialog
box.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0504.%20Standard%20dialog%20boxes.htm (5 of 12) [6/26/02 3:09:45 PM]

0504. Standard dialog boxes

Color Dialog Box

Following code shows how one can apply color selection to the
backbround of form with the use of color dialog box.

Private Sub cmdColor_Click()

 CD1.ShowColor '---shows color dialog box

 Form1.BackColor = CD1.Color '---sets user selected color to
form back

End Sub

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0504.%20Standard%20dialog%20boxes.htm (6 of 12) [6/26/02 3:09:45 PM]

0504. Standard dialog boxes

Font Dialog Box

Code mentioned below shows that font can be manipulate with the
use of font dialog box.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0504.%20Standard%20dialog%20boxes.htm (7 of 12) [6/26/02 3:09:45 PM]

0504. Standard dialog boxes

Private Sub cmdFont_Click()

On Error GoTo ErrorHandler

 CD1.CancelError = True

 CD1.ShowFont '---shows font dialog box

 '---now set form properties as represented by user in font dialog box

 Form1.FontName = CD1.FontName

 Form1.FontSize = CD1.FontSize

 Form1.FontBold = CD1.FontBold

 Form1.FontItalic = CD1.FontItalic

ErrorHandler:

 Exit Sub

End Sub

Note

Before using Font dialog box one has to remember that font must be
installed in a proper manner to the system, Otherwise it can generate
error. Or programmer has to check for the error handler. Error can
be handle with the use of On error goto statement provided

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0504.%20Standard%20dialog%20boxes.htm (8 of 12) [6/26/02 3:09:46 PM]

0504. Standard dialog boxes

cancelError property is True for common dialog control.

Printer Dialog Box

The CommonDialog control can display two distinct dialogs: the
Print Setup dialog box that allows users to select a printer's
attributes and the standard Print dialog that lets users select many
options of a print job, such as which portion of the document should
be printed (all, a page range, or the current selection), the number of
copies, and so on. You decide which dialog box appears by setting
the cdlPDPrintSetup bit in the Flags property. The complete list of
bits that can be set in the Flags property.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0504.%20Standard%20dialog%20boxes.htm (9 of 12) [6/26/02 3:09:46 PM]

0504. Standard dialog boxes

On Error Resume Next

With CommonDialog1

 ' Prepare to print using the Printer object.

 .PrinterDefault = True

 ' Disable printing to file and individual page printing.

 .Flags = cdlPDDisablePrintToFile Or cdlPDNoPageNums

 If Text1.SelLength = 0 Then

 ' Hide Selection button if there is no selected text.

 .Flags = .Flags Or cdlPDNoSelection

 Else

 ' Else enable the Selection button and make it the default

 ' choice.

 .Flags = .Flags Or cdlPDSelection

 End If

 ' We need to know whether the user decided to print.

 .CancelError = True

 .ShowPrinter

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0504.%20Standard%20dialog%20boxes.htm (10 of 12) [6/26/02 3:09:46 PM]

0504. Standard dialog boxes

 If Err = 0 Then

 If .Flags And cdlPDSelection Then

 Printer.Print Text1.SelText

 Else

 Printer.Print Text1.Text

 End If

 End If

End With

Help Windows
You can use the CommonDialog control to display information from
HLP files. In this case, no dialog box appears and only a few
properties are used. You should assign the HelpFile property the
filename and path, and the HelpCommand property an enumerated
value that tells what you want to do with that file. Depending on
which operation you're performing, you might need to assign a value
to either the HelpKey or HelpContext property. The following code
snippet shows how you can display the contents page associated
with a help file:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0504.%20Standard%20dialog%20boxes.htm (11 of 12) [6/26/02 3:09:46 PM]

0504. Standard dialog boxes

With CommonDialog1

 ' Note: The path of this file may be different on your system.

 .HelpFile = "C:\Windows\Help\windows.hlp"

 .HelpCommand = cdlHelpContents

 .ShowHelp

End With

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0504.%20Standard%20dialog%20boxes.htm (12 of 12) [6/26/02 3:09:46 PM]

0505. Menu Editor

Menu Editor

Fig. 1 Shows Menu Editor available in menu : Tools -- Menu Editor
(ctrl + E)

Fields Details

Caption Field value represents menu item in menu

Name Field value represents menu and useful in
programming. It must be unique in list and can not take
space in between two names or special character.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0505.%20Menu%20Editor.htm (1 of 4) [6/26/02 3:09:48 PM]

0505. Menu Editor

Index To create control array of menu, It helps in generating
menus dynamically at run time.

Shortcut Short cut key related to menu at run time

HelpContextId Represents Help Id i.e. topic related help available in
Help file

NegotiatePosition Position in menu

Checked Whether menu is checked or not. can manipulate at
run time as

<menu.checked> = NOT <menu.checked>

Enabled Whether menu is Enabled or not. Enabled menu
changes to grayed

Visible Whether menu should be visible to the user or not, can
be manipulate at run time

WindowList Whether window list should be available in menu bar
or not. Window list can come with Top level menu and
can be assigned to one menu only.

LeftArrowKey To indent menu item, that generates sub menu

RightArrowKey To Outdent menu item.

UpArrowKey To move menu item upwords.

DownArrowKey To move menu item downwords.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0505.%20Menu%20Editor.htm (2 of 4) [6/26/02 3:09:48 PM]

0505. Menu Editor

Next To add next item in menu and to navigate throught
menu

Insert To Insert New item in between existing menu

Delete To delete existing menu

Ok - Button To save changes and close menu editor

Cancel - Button To Undo changes and close menu editor

Accessing Menus at Run Time
Menu controls expose only one event, Click. As you expect, this
event fires when the user clicks on the menu:

Private Sub mnuFileExit_Click()

 Unload Me

End Sub

You can manipulate menu items at run time through their Checked,
Visible, and Enabled properties. For example, you can easily
implement a menu item that acts as a switch and displays or hides a
status bar:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0505.%20Menu%20Editor.htm (3 of 4) [6/26/02 3:09:48 PM]

0505. Menu Editor

Private Sub mnuViewStatus_Click()

 ' First, add or remove the check sign.

 mnuViewStatus.Checked = Not mnuViewStatus.Checked

 ' Then make the status bar visible or not.

 staStatusBar.Visible = mnuViewStatus.Checked

End Sub

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0505.%20Menu%20Editor.htm (4 of 4) [6/26/02 3:09:48 PM]

0506. Pop up menu

Pop up menu
Visual Basic also supports pop-up menus, those context-sensitive
menus that most commercial applications show when you right-click
on an user interface object. In Visual Basic, you can display a pop-
up menu by calling the form's PopupMenu method, typically from
within the MouseDown event procedure of the object:

Private Sub List1_MouseDown(Button As Integer, Shift As Integer, X As
Single _

 , Y As Single)

 If Button And vbRightButton Then

 ' User right-clicked the list box.

 PopupMenu mnuListPopup

 End If

End Sub

The argument you pass to the PopupMenu method is the name of a
menu that you have defined using the Menu Editor. This might be
either a submenu that you can reach using the regular menu
structure or a submenu that's intended to work only as a pop-up
menu. In the latter case, you should create it as a top-level menu in
the Menu Editor and then set its Visible attribute to False. If your
program includes many pop-up menus, you might find it convenient
to add one invisible top-level entry and then add all the pop-up
menus below it. The complete syntax of the PopupMenu method is
quite complex:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0506.%20Pop%20up%20menu.htm (1 of 2) [6/26/02 3:09:49 PM]

0506. Pop up menu

PopupMenu Menu, [Flags], [X], [Y], [DefaultMenu]

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0506.%20Pop%20up%20menu.htm (2 of 2) [6/26/02 3:09:49 PM]

0507. MDI Application

MDI (Multiple Document Interface)
MDI stands for Multiple Document Interface and is the type of user
interface used by most of the applications in the Microsoft Office
suite, including Microsoft Word, Microsoft Excel, and Microsoft
PowerPoint. Whenever you have an application that should be able
to deal with multiple documents at the same time, an MDI interface is
probably the best choice.

Fig. 1 shows MDI parent and child form with project explorer
showing icon difference in the list and MDIChild property as true for
child form in properties window.

MDI Applications

You begin developing an MDI application by adding an MDIForm
module to the current project. An MDIForm module is similar to a
regular Form module, with just a few peculiarities:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0507.%20MDI%20Application.htm (1 of 7) [6/26/02 3:09:52 PM]

0507. MDI Application

• You can have only one MDIForm module in each project;
after you add one MDI module to the current project, the Add
MDIForm command in the Project menu is disabled, as is the
corresponding icon on the main toolbar.

• You can't place most controls directly on an MDIForm
surface. More specifically, you can create only menus, invisible
controls (such as Timer and CommonDialog controls), and
controls that support the Align property (such as PictureBox,
Toolbar, and StatusBar controls). The only way to show any
other control on an MDIForm object is to place it inside a
container control, typically a PictureBox control.

• You can't display text or graphics on an MDIForm surface.
Again, you need to place a PictureBox control and display text
or graphics inside it.

MDI child forms

An MDIForm object contains one or more child forms. To create
such child forms, you add a regular form to the project and set its
MDIChild property to True. When you do this, the form's icon in the
Project Explorer window changes. You don't have to specify which
MDI form this form is a child of because there can be only one
MDIForm module per project.

• An MDI child form can't be displayed outside its parent
MDIForm. If an MDI child form is the startup form for an
application, its parent MDI form is automatically loaded and
displayed before the child form becomes visible.

• MDI child forms have other peculiarities as well. For

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0507.%20MDI%20Application.htm (2 of 7) [6/26/02 3:09:52 PM]

0507. MDI Application

example, they don't display menu bars as regular forms do: If
you add one or more top-level menus to an MDI child form, when
the form becomes active its menu bar replaces the MDI parent
form's menu bar. For this reason, it's customary for MDI child
forms not to include a menu; you define menus only for the main
MDIForm module.

• It's also customary for the Window menu to include a list of
all open MDI child forms and to let the user quickly switch to any
one of them with a click of the mouse. (See Figure 9-12.) Visual
Basic makes it simple to add this feature to your MDI
applications: You only have to tick the WindowList option in the
Menu Editor for the top-level Window menu. Alternatively, you
can create a submenu with the list of all open windows by
ticking the WindowList option for a lower level menu item. In any
case, only one menu item can have this option ticked.

CODES

• When a menu command is invoked in the MDIForm module,
you normally apply it to the MDI child form that's currently
active, which you do through the ActiveForm property. For
example, here's how you execute the Close command on the File
menu:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0507.%20MDI%20Application.htm (3 of 7) [6/26/02 3:09:52 PM]

0507. MDI Application

' In the MDI parent form

Private Sub mnuFileClose_Click()

 ' Close the active form, if there is one.

 If Not (ActiveForm Is Nothing) Then Unload ActiveForm

End Sub

• If you wish to open new child of the same type following
code can help you out ' Inside the MDIForm module

Private Sub mnuFileNew_Click()

 Dim frmDoc As New frmDocument

 frmDoc.Show

End Sub

OR

Private Sub mnuFileNew_Click()

Dim frmDoc As frmDocument

set frmDoc = New frmDocument

Load frmDoc

End Sub

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0507.%20MDI%20Application.htm (4 of 7) [6/26/02 3:09:52 PM]

0507. MDI Application

• MDIForm modules support an additional method that's not
exposed by regular forms: the Arrange method. This method
provides a quick way to programmatically arrange all the child
forms in an MDI application. You can tile all child forms
horizontally or vertically, you can arrange them in a cascading
fashion, or you can line up all the minimized forms in an orderly
fashion near the bottom of the MDI parent form. To this purpose,
you usually create a Window menu with four commands: Tile
Horizontally, Tile Vertically, Cascade, and Arrange Icons. This is
the code behind these menu items:

Private Sub mnuTileHorizontally_Click()

 Me.Arrange vbTileHorizontal

End Sub

Private Sub mnuTileVertically_Click()

 Me.Arrange vbTileVertical

End Sub

Private Sub mnuCascade_Click()

 Me.Arrange vbCascade

End Sub

Private Sub mnuArrangeIcons_Click()

 Me.Arrange vbArrangeIcons

End Sub

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0507.%20MDI%20Application.htm (5 of 7) [6/26/02 3:09:52 PM]

0507. MDI Application

Difference Between MDI and SDI

MDI (Multiple Doc. Interface) SDI (Single Doc. Interface)

Application can be able to deal with
multiple documents at the same
time.

Application can be able to deal with
single documents at the same time.

Microsoft Office member are the
example of MDI application.

Notepad is example of SDI
application.

We can have only one MDIForm
module in each project.

We can have multiple SDI Form in
one project.

We can't place most controls
directly on an MDIForm surface. For
that one require to place picture box
and then place controls on picture
box.

We can place any or all controls on
SDI form.

We can't display text or graphics on
an MDIForm surface.

We can use graphical methods on
standard form directly.

An MDIForm object contains one or
more child forms.

There is no concepts of child form in
SDI application

An MDI child form can't be
displayed outside its parent
MDIForm

Two separate form can be displayed
independently.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0507.%20MDI%20Application.htm (6 of 7) [6/26/02 3:09:52 PM]

0507. MDI Application

MDI child forms don't display menu
bars. If you add one or more top-
level menus to an MDI child form it
will show menu to MDI parent form.

SDI forms contains menu items
separately on its own.

We can arrange child forms with the
use of arrange method from parent
form.

We can not arrange forms like MDI
and no Arrange method available
with SDI.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0507.%20MDI%20Application.htm (7 of 7) [6/26/02 3:09:52 PM]

0601. Date

§ Date

Syntax : Date()

Returns : Variant Data Type

Details : It gives system date

§ DateAdd

Syntax : DateAdd(interval, number, date)

Returns : Variant (date)

Details : DateAdd function adds specified interval to the given date.

Interval can be Year (yyyy), Quarter (q), Month (m), Day of year (y),
Day (d), Weekday (w), Week (ww), Hour (h), Minute (n), Second (s)

Example : DateAdd("m", 1, "1-Jan-01")

Above example adds one month to "1-Jan-01" and returns "1-Feb-
01"

§ DateDiff

Syntax : DateDiff(interval, date1, date2)

Returns : Variant (Long)

Details : It returns difference between two dates in terms of interval

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0601.%20Date.htm (1 of 6) [6/26/02 3:13:15 PM]

0601. Date

Interval can be Year (yyyy), Quarter (q), Month (m), Day of year (y),
Day (d), Weekday (w), Week (ww), Hour (h), Minute (n), Second (s)

Example : DateAdd("m", "1-Mar-01", "1-Jan-01")

Above example returns 2 as a difference of two dates in terms of
month

§ DatePart

Syntax : DatePart(interval, date)

Returns : Integer

Details : This function returns part of specified date

Example : This example takes a date and, using the DatePart
function, displays the quarter of the year in which it occurs.

Dim TheDate As Date ' Declare variables.

Dim Msg

TheDate = InputBox("Enter a date:")

Msg = "Quarter: " & DatePart("q", TheDate)

MsgBox Msg

§ DateSerial

Syntax : DateSerial(year, month, day)

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0601.%20Date.htm (2 of 6) [6/26/02 3:13:15 PM]

0601. Date

Returns : Variant (Date)

Details : Returns a Date for a specified year, month, and day.

Example : TDate = DateSerial(1975, 6, 26) ' Return a date.

number represented for year (1975), month (6), and day (26) returns
Date with the user of DateSerial.

§ DateValue

Syntax : DateValue(date)

Returns : Date

Details : Converts a string to a Variant (Date)

Example : CDate = DateValue("Jun 26, 1975") ' Return a date to
Cdate which is date type variable.

§ Day

Syntax : Day(date)

Returns : Integer

Details : specify a whole number between 1 and 31

§ Hour

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0601.%20Date.htm (3 of 6) [6/26/02 3:13:15 PM]

0601. Date

Syntax : Hour(time)

Returns : Integer

Details : specifying a whole number between 0 and 23

§ Minute

Syntax : Minute(time)

Returns : Integer

Details : specify number between 0 and 59

§ Month

Syntax : Month(date)

Returns : Integer

Details : specify number between 1 and 12

§ Second

Syntax : Second(time)

Returns : Integer

Details : specifying number between 0 and 59

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0601.%20Date.htm (4 of 6) [6/26/02 3:13:15 PM]

0601. Date

§ TimeSerial

Syntax : TimeSerial(hour, minute, second)

Returns : Date

Details : Returns a Time for a specified Hour, Minute and Second.

Example : TDate = TimeSerial(16, 35, 17) ' represents 4:35:17 PM.

§ TimeValue

Syntax : TimeValue(time)

Returns : Date

Details : Returns a Date for a specified year, month, and day.

Example : TDate = TimeValue("4:35:17 PM") ' Return a time.

§ WeekDay

Syntax : Weekday(date)

Returns : Integer

Details : Returns Number value coresponding day like sunday as 0,
monday as 1 like that...

Example :

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0601.%20Date.htm (5 of 6) [6/26/02 3:13:15 PM]

0601. Date

Dim TDate, MyWeekDay

TDate = #Jun 26, 1975# ' Assign a date.

MyWeekDay = Weekday(TDate) ' MyWeekDay contains 4
because

 ' TDate represents a Wednesday.

§ Year

Syntax : Year(date)

Returns : Integer

Details : Returns Year part of the date

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0601.%20Date.htm (6 of 6) [6/26/02 3:13:15 PM]

0602. Math

§ Abs

Syntax : Abs(number)

Returns : same dataType as passed

Details : specify absolute value of a number passed as argument

Example : Abs(-23.43) = 23.43 and Abs(12) = 12

§ Atn

Syntax : Atn(number)

Returns : Double

Details : Returns arctangent of number

The Atn function takes the ratio of two sides of a right triangle
(number) and returns the corresponding angle in radians. The ratio
is the length of the side opposite the angle divided by the length of
the side adjacent to the angle. The range of the result is -pi/2 to pi/2
radians. To convert degrees to radians, multiply degrees by pi/180.
To convert radians to degrees, multiply radians by 180/pi. Note Atn
is the inverse trigonometric function of Tan,

Example : pi = 4 * Atn(1) ' Calculate the value of pi.

§ Cos

Syntax : Cos(number)

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0602.%20Math.htm (1 of 5) [6/26/02 3:13:17 PM]

0602. Math

Returns :Double

Details : Returns cosine of an angle.

The Cos function takes an angle and returns the ratio of two sides of
a right triangle. The ratio is the length of the side adjacent to the
angle divided by the length of the hypotenuse. The result lies in the
range -1 to 1. To convert degrees to radians, multiply degrees by
pi/180. To convert radians to degrees, multiply radians by 180/pi.

§ Exp

Syntax : Exp(number)

Returns : Double

Details : specifying e (the base of natural logarithms) raised to a
power

The constant e is approximately 2.718282. Note The Exp function
complements the action of the Log function and is sometimes
referred to as the antilogarithm.

§ Log

Syntax : Log(number)

Returns : Double

Details : Returns natural logarithm of a number

The natural logarithm is the logarithm to the base e. You can

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0602.%20Math.htm (2 of 5) [6/26/02 3:13:17 PM]

0602. Math

calculate base-n logarithms for any number x by dividing the natural
logarithm of x by the natural logarithm of n as follows:

Logn(x) = Log(x) / Log(n)

Example : The following example illustrates a custom Function that
calculates base-10 logarithms:

Static Function Log10(X)

 Log10 = Log(X) / Log(10#)

End Function

§ Rnd

Syntax : Rnd(number)

Returns : Single

Details : Generates random number in specified number range

Example : Rnd(255) returns any value between o to 255

§ Sgn

Syntax : Sgn(number)

Returns : Integer

Details : Returns the sign of a number

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0602.%20Math.htm (3 of 5) [6/26/02 3:13:17 PM]

0602. Math

Example : Sgn(-234.53) = -1 , Sgn(43) = + 1

§ Sin

Syntax : Sin(number)

Returns : Double

Details : sine of an angle

The Sin function takes an angle and returns the ratio of two sides of
a right triangle. The ratio is the length of the side opposite the angle
divided by the length of the hypotenuse.The result lies in the range -
1 to 1.

§ Sqr

Syntax : Sqr(number)

Returns : Double

Details : Returns square root of a number

Example : Sqr(25) = 5, Sqr(1) = 1

§ Tan

Syntax : Tan(number)

Returns : Double

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0602.%20Math.htm (4 of 5) [6/26/02 3:13:17 PM]

0602. Math

Details : Returns tangent of an angle

Tan takes an angle and returns the ratio of two sides of a right
triangle. The ratio is the length of the side opposite the angle divided
by the length of the side adjacent to the angle.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0602.%20Math.htm (5 of 5) [6/26/02 3:13:17 PM]

0603. String

§ Asc

Syntax : Asc(string)

Returns : Integer

Details : Returns an Integer representing the character code
corresponding to the first letter in a string.

Example : Asc("a") = 97, Asc("ab") = 97, Asc("b") = 98

§ Chr

Syntax : Chr(charcode)

Returns : String

Details : Returns a String containing the character associated with
the specified character code.

Note The ChrB function is used with byte data contained in a String.
Instead of returning a character, which may be one or two bytes,
ChrB always returns a single byte. The ChrW function returns a
String containing the Unicode character except on platforms where
Unicode is not supported, in which case, the behavior is identical to
the Chr function.

Example : Chr(97) = "a" , Chr(98) = "b", Chr(65) = A, Chr(62) = ">",
Chr(37) = "%"

§ Format

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0603.%20String.htm (1 of 13) [6/26/02 3:13:21 PM]

0603. String

Syntax : Format(expression, format)

Returns : String

Details : Returns formatted expression according to instructions
contained in a format expression.

Example :

Dim MyTime, MyDate, MyStr

MyTime = #17:04:23#

MyDate = #January 27, 1993#

' Returns current system time in the system-defined long
time format.

MyStr = Format(Time, "Long Time")

' Returns current system date in the system-defined long
date format.

MyStr = Format(Date, "Long Date")

MyStr = Format(MyTime, "h:m:s") ' Returns "17:4:23".

MyStr = Format(MyTime, "hh:mm:ss AMPM") ' Returns
"05:04:23 PM".

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0603.%20String.htm (2 of 13) [6/26/02 3:13:21 PM]

0603. String

MyStr = Format(MyDate, "dddd, mmm d yyyy") ' Returns
"Wednesday,

 ' Jan 27 1993".

' If format is not supplied, a string is returned.

MyStr = Format(23) ' Returns "23".

' User-defined formats.

MyStr = Format(5459.4, "##,##0.00") ' Returns "5,459.40".

MyStr = Format(334.9, "###0.00") ' Returns "334.90".

MyStr = Format(5, "0.00%") ' Returns "500.00%".

MyStr = Format("HELLO", "<") ' Returns "hello".

MyStr = Format("This is it", ">") ' Returns "THIS IS IT".

§ Instr

Syntax : InStr([start,]string1, string2[, compare])

Returns : Long

Details : specify the position of the first occurrence of one string
within another.

[start] - an optional argument which specifies string position from

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0603.%20String.htm (3 of 13) [6/26/02 3:13:21 PM]

0603. String

where search has to start.

string1 - compulsary argument

string2 - compulsary argument

[compare] - an optional argument which specifies comparision type
like vbBinaryCompare, vbTextCompare etc.

Return Values

If InStr returns

string1 is zero-length 0

string1 is Null Null

string2 is zero-length start

string2 is Null Null

string2 is not found 0

string2 is found within string1 Position at which match is found

start > string2 0

The InStrB function is used with byte data contained in a string.
Instead of returning the character position of the first occurrence of
one string within another, InStrB returns the byte position.

Example :

Dim SearchString, SearchChar, MyPos

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0603.%20String.htm (4 of 13) [6/26/02 3:13:21 PM]

0603. String

SearchString ="XXpXXpXXPXXP" ' String to search in.

SearchChar = "P" ' Search for "P".

' A textual comparison starting at position 4. Returns 6.

MyPos = Instr(4, SearchString, SearchChar, 1)

' A binary comparison starting at position 1. Returns 9.

MyPos = Instr(1, SearchString, SearchChar, 0)

' Comparison is binary by default (last argument is omitted).

MyPos = Instr(SearchString, SearchChar) ' Returns 9.

MyPos = Instr(1, SearchString, "W") ' Returns 0.

§ Lcase

Syntax : LCase(string)

Returns : String

Details : Returns a String that has been converted to lowercase.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0603.%20String.htm (5 of 13) [6/26/02 3:13:21 PM]

0603. String

Example : Lcase("eBookMark") = "ebookmark"

§ Left

Syntax : Left(string, length)

Returns : String

Details : Returns String containing a specified number of characters
from the left side of a string.

Example : Left("eBookMark",5) = "eBook"

§ Len

Syntax : Len(string | varname)

Returns : Long

Details : Returns number of characters in a string or the number of
bytes required to store a variable.

Example : Len("eBookMark") = 9 ' returns no of character in string

Dim i as Single

len(i) = 4 ' returns no of bytes required for i to store any value

§ Trim

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0603.%20String.htm (6 of 13) [6/26/02 3:13:21 PM]

0603. String

Syntax : LTrim(string), RTrim(string), Trim(string)

Returns : String

Details : Returns a String containing a copy of a specified string
without leading spaces (LTrim), trailing spaces (RTrim), or both
leading and trailing spaces (Trim).

Example :

Ltrim(" eBookMark") = "eBookMark"

Rtrim("eBookMark ") = "eBookMark"

Trim(" eBookMark ") = "eBookMark"

§ Mid

Syntax : Mid(string, start[, length])

Returns : String

Details : Returns String containing a specified number of characters
from a string. Note Use the MidB function with byte data contained in
a string, as in double-byte character set languages. Instead of
specifying the number of characters, the arguments specify
numbers of bytes. For sample code that uses MidB, see the second
example in the example topic.

Example :

Mid("eBookMark", 2, 4) = "Book"

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0603.%20String.htm (7 of 13) [6/26/02 3:13:21 PM]

0603. String

Mid("eBookMark", 6, 1) = "M"

§ MonthName

Syntax : MonthName(month[, abbreviate])

Returns : String

Details : Returns a string indicating the specified month.

Example :

MonthName(1) = "January"

MonthName(1,0) = "January"

MonthName(1,1) = "Jan" 'abbreviated

MonthName(2,1) = "Feb"

§ Right

Syntax : Right(string, length)

Returns : String

Details : Returns a String containing a specified number of
characters from the right side of a string.

Example :

Right("eBookMark", 4) = "Mark"

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0603.%20String.htm (8 of 13) [6/26/02 3:13:21 PM]

0603. String

Right("eBookMark", 1) = "k"

§ Space

Syntax : Space(number)

Returns : String

Details : Returns String consisting of the specified number of
spaces. It is useful for representing data in structured manner.

Example :

"eBookMark" & Space(10) & "is nice" = "eBookMark is nice"

§ StrComp

Syntax : StrComp(string1, string2[, compare])

Returns : Integer

Details : Returns a Integer indicating the result of a string
comparison.

Compare is a optional argument that can hold value like
vbBinaryCompare (0) that Performs a binary comparison and
vbTextCompare (1) that Performs a textual comparison.

Return Values

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0603.%20String.htm (9 of 13) [6/26/02 3:13:21 PM]

0603. String

If StrComp returns

string1 is less than string2 -1

string1 is equal to string2 0

string1 is greater than string2 1

string1 or string2 is null null

Example :

MyStr1 = "ABCD": MyStr2 = "abcd" ' Define variables.

MyComp = StrComp(MyStr1, MyStr2, 1) ' Returns 0.

MyComp = StrComp(MyStr1, MyStr2, 0) ' Returns -1.

MyComp = StrComp(MyStr2, MyStr1) ' Returns 1.

§ StrConv

Syntax : StrConv(string, conversion, LCID)

Returns : String

Details : Returns String converted as specified. LCID (Optional) The
LocaleID, if different than the system LocaleID. (The system LocaleID
is the default.)

The conversion argument settings are:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0603.%20String.htm (10 of 13) [6/26/02 3:13:21 PM]

0603. String

Constant Value Description

vbUpperCase 1 Converts the string to uppercase
characters.

vbLowerCase 2 Converts the string to lowercase
characters.

vbProperCase 3 Converts the first letter of every word in
string to uppercase.

vbUnicode 64 Converts the string to Unicode using
the default code page of the system.

vbFromUnicode 128 Converts the string from Unicode to the
default code page of the system.

The following are valid word separators for proper casing: Null
(Chr$(0)), horizontal tab (Chr$(9)), linefeed (Chr$(10)), vertical tab
(Chr$(11)), form feed (Chr$(12)), carriage return (Chr$(13)), space
(SBCS) (Chr$(32)).

Example :

This example uses the StrConv function to convert a Unicode string
to an ANSI string.

Dim i As Long

Dim x() As Byte

x = StrConv("ABCDEFG", vbFromUnicode) ' Convert string.

For i = 0 To UBound(x)

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0603.%20String.htm (11 of 13) [6/26/02 3:13:21 PM]

0603. String

 Debug.Print x(i)

Next

§ String

Syntax : String(number, character)

Returns : String

Details : Returns String containing a repeating character string of
the length specified.

Example :

String(5, "*") ' Returns "*****".

String(10, "ABC") ' Returns "AAAAAAAAAA".

§ StrReverse

Syntax : StrReverse(expression)

Returns : String

Details : Returns a string in which the character order of a specified
string is reversed.

§ Ucase

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0603.%20String.htm (12 of 13) [6/26/02 3:13:21 PM]

0603. String

Syntax : UCase(string)

Returns : String

Details : Returns String containing the specified string, converted to
uppercase.

Example : Ucase("eBookMark") = "EBOOKMARK"

§ WeekDayName

Syntax : WeekDayName(weekday, [abbreviate])

Returns : String

Details : Returns a string that indicates the day of the week.

Example :

WeekdayName(2) = "Monday"

WeekdayName(2, 0) = "Monday"

WeekdayName(2, 1) = "Mon"

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0603.%20String.htm (13 of 13) [6/26/02 3:13:21 PM]

0605. Information

§ Err

Syntax : Err()

Details : Function Err() As ErrObject Member of VBA.Information
Returns the error number for the error that occurred

Example : Err.Number

§ IsArray

Syntax : IsArray(VarName)

Returns : Boolean

Details : Function IsArray(VarName) As Boolean Member of
VBA.Information Returns True if the variable is an array

Example :

Dim i(10) as integer, j as boolean, k as single

j = IsArray(i) ' value of j = True

k = IsArray(k) 'value of k = False

§ Isdate

Syntax : IsDate(expression)

Returns : Boolean

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0605.%20Information.htm (1 of 11) [6/26/02 3:13:24 PM]

0605. Information

Details : Returns a Boolean value indicating whether an expression
can be converted to a date.

Example :

Dim MyDate, YourDate, NoDate, MyCheck

MyDate = "February 12, 1969": YourDate = #2/12/69#: NoDate =
"Hello"

MyCheck = IsDate(MyDate) ' Returns True.

MyCheck = IsDate(YourDate) ' Returns True.

MyCheck = IsDate(NoDate) ' Returns False

§ IsEmpty

Syntax : IsEmpty(expression)

Returns : Boolean

Details : Returns a Boolean value indicating whether a variable has
been initialized. IsEmpty returns True if the variable is uninitialized,
or is explicitly set to Empty; otherwise, it returns False. False is
always returned if expression contains more than one variable.
IsEmpty only returns meaningful information for variants.

Example :

Dim MyVar, MyCheck

MyCheck = IsEmpty(MyVar) ' Returns True.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0605.%20Information.htm (2 of 11) [6/26/02 3:13:24 PM]

0605. Information

MyVar = Null ' Assign Null.

MyCheck = IsEmpty(MyVar) ' Returns False.

MyVar = Empty ' Assign Empty.

MyCheck = IsEmpty(MyVar) ' Returns True.

§ IsError

Syntax : IsError(expression)

Returns : Boolean

Details : Returns a Boolean value indicating whether an expression
is an error value. The IsError function is used to determine if a
numeric expression represents an error. IsError returns True if the
expression argument indicates an error; otherwise, it returns False.

§ IsMissing

Syntax : IsMissing(argname)

Returns : Boolean

Details : Returns a Boolean value indicating whether an optional
Variant argument has been passed to a procedure. The required
argname argument contains the name of an optional Variant

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0605.%20Information.htm (3 of 11) [6/26/02 3:13:24 PM]

0605. Information

procedure argument. Use the IsMissing function to detect whether or
not optional Variant arguments have been provided in calling a
procedure. IsMissing returns True if no value has been passed for
the specified argument; otherwise, it returns False. Note IsMissing
does not work on simple data types (such as Integer or Double)
because, unlike Variants, they don't have a provision for a "missing"
flag bit.

Example :

Dim ReturnValue

' The following statements call the user-defined function
procedure.

ReturnValue = ReturnTwice() ' Returns Null.

ReturnValue = ReturnTwice(2) ' Returns 4.

' Function procedure definition.

Function ReturnTwice(Optional A)

 If IsMissing(A) Then

 ' If argument is missing, return a Null.

 ReturnTwice = Null

 Else

 ' If argument is present, return twice the value.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0605.%20Information.htm (4 of 11) [6/26/02 3:13:24 PM]

0605. Information

 ReturnTwice = A * 2

 End If

End Function

§ IsNull

Syntax : IsNull(expression)

Returns : Boolean

Details : Returns a Boolean value that indicates whether an
expression contains no valid data (Null). The Null value indicates
that the Variant contains no valid data. Null is not the same as
Empty, which indicates that a variable has not yet been initialized. It
is also not the same as a zero-length string (""), which is sometimes
referred to as a null string.

Example :

Dim MyVar, MyCheck

MyCheck = IsNull(MyVar) ' Returns False.

MyVar = ""

MyCheck = IsNull(MyVar) ' Returns False.

MyVar = Null

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0605.%20Information.htm (5 of 11) [6/26/02 3:13:24 PM]

0605. Information

MyCheck = IsNull(MyVar) ' Returns True.

§ IsNumeric

Syntax : IsNumeric(expression)

Returns : Boolean

Details : Returns a Boolean value indicating whether an expression
can be evaluated as a number. IsNumeric returns True if the entire
expression is recognized as a number; otherwise, it returns False.
IsNumeric returns False if expression is a date expression.

Example :

Dim MyVar, MyCheck

MyVar = "53" ' Assign value.

MyCheck = IsNumeric(MyVar) ' Returns True.

MyVar = "459.95" ' Assign value.

MyCheck = IsNumeric(MyVar) ' Returns True.

MyVar = "45 Help" ' Assign value.

MyCheck = IsNumeric(MyVar) ' Returns False.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0605.%20Information.htm (6 of 11) [6/26/02 3:13:24 PM]

0605. Information

§ IsObject

Syntax : IsObject(identifier)

Returns : Boolean

Details : Returns a Boolean value indicating whether an identifier
represents an object variable. IsObject is useful only in determining
whether a Variant is of VarType vbObject. This could occur if the
Variant actually references (or once referenced) an object, or if it
contains Nothing. IsObject returns True if identifier is a variable
declared with Object type or any valid class type, or if identifier is a
Variant of VarType vbObject, or a user-defined object; otherwise, it
returns False. IsObject returns True even if the variable has been set
to Nothing.

Example :

Dim MyInt As Integer, YourObject, MyCheck ' Declare
variables.

Dim MyObject As Object

Set YourObject = MyObject ' Assign an object reference.

MyCheck = IsObject(YourObject) ' Returns True.

MyCheck = IsObject(MyInt) ' Returns False.

§ QBColor

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0605.%20Information.htm (7 of 11) [6/26/02 3:13:24 PM]

0605. Information

Syntax : QBColor(color)

Returns : Long

Details : Returns a Long representing the RGB color code
corresponding to the specified color number in the range 0–15.

Number Color

0 Black

1 Blue

2 Green

3 Cyan

4 Red

5 Magenta

6 Yellow

7 White

8 Gray

9 Light Blue

10 Light Green

11 Light Cyan

12 Light Red

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0605.%20Information.htm (8 of 11) [6/26/02 3:13:24 PM]

0605. Information

13 Light Magenta

14 Light Yellow

15 Bright White

Example :

This example shows that form background color get change every second
for 16 colors as QbColor(0) to QbColor(15)

Private Sub Timer1_Click()

Static i as Integer

'---interval of timer is set to 1000

Form1.BackColor = QbColor(i)

i = i + 1

If i = 16 then

i=0

end if

End Sub

§ RGB

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0605.%20Information.htm (9 of 11) [6/26/02 3:13:24 PM]

0605. Information

Syntax : RGB(red, green, blue)

Returns : Long

Details : Returns a Long whole number representing an RGB color
value. Red, Green, Blue are Required arguments. It is number in the
range of 0–255. The value for any argument to RGB that exceeds 255
is assumed to be 255.

Example :

RGB(0, 0, 0) = Black

RGB(0, 0, 255) = Blue

RGB(0, 255, 0) = Green

RGB(255, 0, 0) = Red

§ TypeName

Syntax : TypeName(varname)

Returns : String

Details : Returns a String that provides information about a variable.

Example :

' Declare variables.

Dim NullVar, MyType, StrVar As String, IntVar As Integer,
CurVar As Currency

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0605.%20Information.htm (10 of 11) [6/26/02 3:13:24 PM]

0605. Information

Dim ArrayVar (1 To 5) As Integer

NullVar = Null ' Assign Null value.

MyType = TypeName(StrVar) ' Returns "String".

MyType = TypeName(IntVar) ' Returns "Integer".

MyType = TypeName(CurVar) ' Returns "Currency".

MyType = TypeName(NullVar) ' Returns "Null".

MyType = TypeName(ArrayVar) ' Returns "Integer()".

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0605.%20Information.htm (11 of 11) [6/26/02 3:13:24 PM]

0607. Collection

Collection Vs. Array
Collections are objects exposed by the VBA library. They can be
used in Visual Basic applications to store groups of related data. In
this sense, Collections are similar to arrays, but the similarities stop
here because of these substantial differences:

• Collection objects don't need to be predimensioned for a
given number of elements; you can add items to a Collection,
and it will grow as needed.

• You can insert items in the middle of a Collection without
worrying about making room for the new element; likewise, you
can delete items without having to shift all other items to fill the
hole. In both cases, the Collection object takes care of all these
chores automatically.

• You can store nonhomogeneous data in a Collection,
whereas arrays can host only data of the type set at compile
time (with the exception of Variant arrays). In general, you can
store in a Collection any value that you could store in a Variant
variable (that is, everything except fixed-length strings and
possibly UDTs).

• A Collection offers a way to associate a key with each item
so that later you can quickly retrieve that item even if you don't
know where it's stored in the Collection. You can also read items
by their numerical index in the collection, as you would do with
regular arrays.

• In contrast to the situation for arrays, once you have added
an item to a Collection you can read the item but not modify it.
The only way to modify a value in a Collection is to delete the
old value and add the new one.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0607.%20Collection.htm (1 of 5) [6/26/02 3:13:27 PM]

0607. Collection

Collection in Detail
With all these advantages, you might wonder why collections haven't
supplanted arrays in the hearts of Visual Basic developers. The main
reason is that Collections are slow, or at least they're noticeably
slower than arrays. To give you an idea, filling an array of 10,000
Long elements is about 100 times faster than filling a Collection of
the same size. Take this into account when you're deciding which
data structure best solves your problem. The first thing you must do
before using a Collection is create it. Like all objects, a Collection
should be declared and then created, as in the following code:

Dim EmployeeNames As Collection

Set EmployeeNames = New Collection

Or you can declare an auto-instancing collection with one single
line of code:

Dim EmployeeNames As New Collection

• ADD Method

You can add items to a Collection object by using its Add method;
this method expects the value you're adding and a string key that
will be associated with that value:

EmployeeNames.Add "John Smith", "Marketing"

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0607.%20Collection.htm (2 of 5) [6/26/02 3:13:27 PM]

0607. Collection

where value can be virtually anything that can be stored in a Variant.
The Add method usually appends the new value to the collection,
but you can decide where exactly you want to store it using either
the before argument or the after argument:

' Insert this value before the first item in the collection.

EmployeeNames.Add "Anne Lipton", "Sales"

' Insert this new value after the element added previously.

EmployeeNames.Add value2, "Robert Douglas", ,"Sales"

Unless you have a good reason to store the new value somewhere
other than at the end of the Collection, I suggest that you not use the
before or after arguments because they slow down the Add method.
The string key is optional. If you specify it and there's another item
with the same key, the Add method will raise an error 457-"This key
is already associated with an element of this collection." (Keys are
compared in a case-insensitive way.)

Once you have added one or more values, you can retrieve them
using the Item method; this method is the default member of the
Collection class, so you can omit it if you want. Items can be read
using their numeric indices (as you do with arrays) or their string
keys:

' All the following statements print "Anne Lipton".

Print EmployeeNames.Item("Sales")

Print EmployeeNames.Item(1)

Print EmployeeNames("Sales")

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0607.%20Collection.htm (3 of 5) [6/26/02 3:13:27 PM]

0607. Collection

Print EmployeeNames(1)

• Count method

returns the number of items in the collection:

EmployeeNames.Count

' Retrieve the last item in the EmployeeNames collection.

Print EmployeeNames.Item(EmployeeNames.Count)

• Remove Item

You can remove items from a Collection object using the Remove
method; this method accepts either a numeric index or a string key:

' Remove the Marketing Boss.

EmployeeNames.Remove "Marketing"

If the key doesn't exist, the Collection object raises an error 5-
"Invalid procedure call or argument." Collections don't offer a native
way to remove all the items in a single operation, so you're forced to
write a loop. Here's a general function that does it for you:

Sub RemoveAllItems(col As Collection)

 Do While col.Count

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0607.%20Collection.htm (4 of 5) [6/26/02 3:13:27 PM]

0607. Collection

 col.Remove 1

 Loop

End Sub

A faster way to remove all the items in a Collection is to destroy the
Collection object itself by setting it to Nothing or to another fresh,
new instance:

' Both these lines destroy the current contents

' of the Collection.

Set EmployeeNames = Nothing

Set EmployeeNames = New Collection

Note

Finally, as I mentioned before, Collections don't allow you to modify
the value of an item. If you want to change the value of an item, you
must first delete it and then add a new item.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0607.%20Collection.htm (5 of 5) [6/26/02 3:13:27 PM]

0609. Conversion

§ CBool

Syntax : CBool(expression)

Returns : Boolean.

Details : If expression is zero, False is returned; otherwise, True is
returned.

Example :

Dim A, B, Check

A = 5: B = 5 ' Initialize variables.

Check = CBool(A = B) ' Check contains True.

A = 0 ' Define variable.

Check = CBool(A) ' Check contains False.

§ CByte

Syntax : CByte(expression)

Returns : Byte

Details : CByte(expression) returns byte value for given expression

Example :

Dim MyDouble, MyByte

MyDouble = 125.5678 ' MyDouble is a Double.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0609.%20Conversion.htm (1 of 6) [6/26/02 3:13:29 PM]

0609. Conversion

MyByte = CByte(MyDouble) ' MyByte contains 126.

§ CCur

Syntax : CCur(expression)

Returns : Currency

Details : CCur(expression) function returns Currency datatype value
for given expression

Example :

Dim MyDouble, MyCurr

MyDouble = 543.214588 ' MyDouble is a Double.

MyCurr = CCur(MyDouble * 2)

' Convert result of MyDouble * 2 (1086.429176) ' to a
Currency (1086.4292).

§ CDate

Syntax : CDate(date)

Returns : Date

Details : The following example uses the CDate function to convert a
string to a date. In general, hard coding dates and times as strings
(as shown in this example) is not recommended. Use date and time

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0609.%20Conversion.htm (2 of 6) [6/26/02 3:13:29 PM]

0609. Conversion

literals (such as #10/19/1962#, #4:45:23 PM#) instead.

Example :

MyDate = "October 19, 1962"	' Define date.

MyShortDate = CDate(MyDate)	' Convert to Date data
type.

MyTime = "4:35:47 PM"		' Define time.

MyShortTime = CDate(MyTime)	' Convert to Date data
type.

§ CDbl

Syntax : CDbl(expression)

Returns : Double

Details : Use the CDbl function to provide internationally aware
conversions from any other data type to a Double subtype.

Example :

Dim MyCurr, MyDouble

MyCurr = CCur(234.456784) ' MyCurr is a Currency
(234.4567).

MyDouble = CDbl(MyCurr * 8.2 * 0.01)

 ' Convert result to a Double (19.2254576).

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0609.%20Conversion.htm (3 of 6) [6/26/02 3:13:29 PM]

0609. Conversion

§ CInt

Syntax : CInt(expression)

Returns : Integer

Details : Use the CInt function to provide internationally aware
conversions from any other data type to an Integer subtype.

Example :

Dim MyDouble, MyInt

MyDouble = 2345.5678 ' MyDouble is a Double.

MyInt = CInt(MyDouble) ' MyInt contains 2346.

§ Same way other function workes, Add to Conversion
functions for

CLng Long

CSng Single

CStr String

§ Hex

Syntax : Hex(number)

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0609.%20Conversion.htm (4 of 6) [6/26/02 3:13:29 PM]

0609. Conversion

Returns : hexadecimal

Details : Returns a string representing the hexadecimal value of a
number.

Example :

Dim MyHex

MyHex = Hex(5) ' Returns 5.

MyHex = Hex(10) ' Returns A.

MyHex = Hex(459) ' Returns 1CB.

§ Oct

Syntax : Oct(number)

Returns : octal

Details : Returns a string representing the octal value of a number.

Example :

Dim MyOct

MyOct = Oct(4) ' Returns 4.

MyOct = Oct(8) ' Returns 10.

MyOct = Oct(459) ' Returns 713.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0609.%20Conversion.htm (5 of 6) [6/26/02 3:13:29 PM]

0609. Conversion

§ Val

Syntax : Val(string)

Returns : Double

Details : Returns the numbers contained in a string as a numeric
value of appropriate type.

Example :

Dim MyValue

MyValue = Val("2457") ' Returns 2457.

MyValue = Val(" 2 45 7") ' Returns 2457.

MyValue = Val("24 and 57") ' Returns 24.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0609.%20Conversion.htm (6 of 6) [6/26/02 3:13:29 PM]

0610. Graphics with VB

Graphics with VB
Graphics Category:

1. Bitmap: Bitmap Graphics are images that can be displayed on
various controls and processed on a pixel-by-pixel basis. You will be
able to khow more about graphics controls like form, picturebox, and
imagebox in chapter 3 and 4.

2. Vector: Vector Graphics are images generated by graphics
commands such as the line and circle commands.

Difference

Bitmap Vector

Bitmap graphics gets distortion
when resolutions gets low.

Vector Graphics are not tied to a
specific monitor resilution. Means
that can be displayed at various
resolutions.

We can create images of landscape
in bitmap graphics.

We can't create images of
landscape in vector graphics.

Bitmap graphics can be created
using visual basic tools like shape,
line with the use of form, picturebox
and imagebox.

Vector graphics can be generated
on picturebox, form with the use of
Line, circle and many more graphic
functions.

Coordinate System (ScaleMode property)

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0610.%20Graphics%20with%20VB.htm (1 of 13) [6/26/02 3:13:32 PM]

0610. Graphics with VB

Constant Name Value Description

vbUser 0 User-defined coordinate system

vbTwips 1 Twips (1,440 twips per inch) Default

vbPoints 2 Points (72 points per inch)

vbPixels 3 Pixels

vbCHaracters 4 Characters (120 twips wide, 240 twips high)

vbInches 5 Inches

vbMillimeters 6 Millimeters

vbCentimeters 7 Centimeters

VECTOR Methods

• PSet Method:

To set a single point in a graphic object (form or picture
box) to a particular color, use the PSet method. We usually
do this to designate a starting point for other graphics
methods. The syntax is:

ObjectName.PSet (x, y), Color

where ObjectName is the object name, (x, y) is the selected
point, and Color is the point color. If the ObjectName is

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0610.%20Graphics%20with%20VB.htm (2 of 13) [6/26/02 3:13:32 PM]

0610. Graphics with VB

omitted, the current form is assumed to be the object. If
Color is omitted, the object's ForeColor property establishes
the color. PSet is usually used to initialize some further
drawing process. Pset can be viewed only when objects
AutoRedraw property is True. Size of point can be incresed
with the use of DrawWidth property.

This form has a ScaleWidth of 3975 (Width 4095) and a
ScaleHeight of 2400 (Height 2805). The command:

PSet (1000, 500)

• Line Method:

The Line method is very versatile. We can use it to draw line
segments, boxes, and filled boxes. To draw a line, the
syntax is:

ObjectName.Line (x1, y1) - (x2, y2), Color

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0610.%20Graphics%20with%20VB.htm (3 of 13) [6/26/02 3:13:32 PM]

0610. Graphics with VB

where ObjectName is the object name, (x1, y1) the starting
coordinate, (x2, y2) the ending coordinate, and Color the line
color. Like PSet, if ObjectName is omitted, drawing is done
to the current form and, if Color is omitted, the object's
ForeColor property is used.

To draw a line from (CurrentX, CurrentY) to (x2, y2), use:

ObjectName.Line - (x2, y2), Color

To draw a box bounded by opposite corners (x1, y1) and (x2,
y2), use:

ObjectName.Line (x1, y1) - (x2, y2), Color, B

and to fill that box (using the current FillPattern), use:

ObjectName.Line (x1, y1) - (x2, y2), Color, BF

Line Method Examples:

Line (1000, 500) - (3000, 2000)

Line - (3000, 1000)

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0610.%20Graphics%20with%20VB.htm (4 of 13) [6/26/02 3:13:33 PM]

0610. Graphics with VB

Line (1000, 500) - (3000, 2000), , B

DrawStyle property

Constant Name Value Description

vbSolid 0 (Default) Solid

vbDash 1 Dash

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0610.%20Graphics%20with%20VB.htm (5 of 13) [6/26/02 3:13:33 PM]

0610. Graphics with VB

vbDot 2 Dot

vbDashDot 3 Dash-dot

vbDashDotDot 4 Dash-dot-dot

vbInvisible 5 Transparent

vbInsideSolid 6 Inside solid

FillStyle property

vbFSSolid 0 Solid

vbFSTransparent 1 (Default) Transparent

vbHorizontalLine 2 Horizontal Line

vbVerticalLine 3 Vertical Line

vbUpwardDiagonal 4 Upward Diagonal

vbDownwardDiagonal 5 Downward Diagonal

vbCross 6 Cross

vbDiagonalCross 7 Diagonal Cross

• Circle Method:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0610.%20Graphics%20with%20VB.htm (6 of 13) [6/26/02 3:13:33 PM]

0610. Graphics with VB

The Circle method can be used to draw circles, ellipses,
arcs, and pie slices. We'll only look at drawing circles. The
syntax is:

ObjectName.Circle (x, y), r, Color

This command will draw a circle with center (x, y) and radius
r, using Color.

Circle Example:

With the same example form, the command:

Circle (2000, 1000), 800

• Print Method:

Another method used to 'draw' to a form or picture box is
the Print method. Yes, for these objects, printed text is
drawn to the form. The syntax is:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0610.%20Graphics%20with%20VB.htm (7 of 13) [6/26/02 3:13:33 PM]

0610. Graphics with VB

ObjectName.Print [information to print]

Here the printed information can be variables, text, or some
combination. If no object name is provided, printing is to the
current form. Information will print beginning at the object's
CurrentX and CurrentY value. The color used is specified by
the object's ForeColor property and the font is specified by
the object's Font characteristics.

• Cls Method:

To clear the graphics drawn to an object, use the Cls
method. The syntax is:

ObjectName.Cls

If no object name is given, the current form is cleared.
Recall Cls only clears the lowest of the three display layers.
This is where graphics methods draw.

Example (Black Board)

Design

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0610.%20Graphics%20with%20VB.htm (8 of 13) [6/26/02 3:13:33 PM]

0610. Graphics with VB

Table

Sr No Name Control Type Properties

1 frmDraw Form Caption="Black Board"

BorderStyle=1-Fixed Single

2 picDraw Picture Box Name=picDraw

3 lblColor(0 to 7) Label Index=0 to 7

4 mnuFile Menu Name = mnuFile

5 mnuFileNew Menu Name = mnuNewFile

6 mnuFileExit Menu Name = mnuFileExit

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0610.%20Graphics%20with%20VB.htm (9 of 13) [6/26/02 3:13:33 PM]

0610. Graphics with VB

Events

'DrawOn will be used to indicate whether you are drawing or not.

Option Explicit

Dim DrawOn As Boolean

'The Form_Load procedure loads colors into each of the label boxes
to allow choice of drawing color. It also sets the BackColor to black
and the ForeColor to Bright White.

Private Sub Form_Load()

'Load drawing colors into control array

Dim I As Integer

For I = 0 To 7

lblColor(I).BackColor = QBColor(I + 8)

Next I

picDraw.ForeColor = QBColor(15) ' Bright White

picDraw.BackColor = QBColor(0) ' Black

End Sub

In the mnuFileNew_Click procedure, we check to see if the user
really wants to start over. If so, the picture box is cleared with the
Cls method.

Private Sub mnuFileNew_Click()

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0610.%20Graphics%20with%20VB.htm (10 of 13) [6/26/02 3:13:33 PM]

0610. Graphics with VB

'Make sure user wants to start over

Dim Response As Integer

Response = MsgBox("Are you sure you want to start a new
drawing?", vbYesNo + vbQuestion, "New Drawing")

If Response = vbYes Then picDraw.Cls

End Sub

In the mnuFileExit_Click procedure, make sure the user really wants
to stop the application.

Private Sub mnuFileExit_Click()

'Make sure user wants to quit

Dim Response As Integer

Response = MsgBox("Are you sure you want to exit the
Blackboard?", vbYesNo + vbCritical + vbDefaultButton2,
"Exit Blackboard")

If Response = vbYes Then End

End Sub

When the left mouse button is clicked, drawing is initialized at the
mouse cursor location in the picDraw_MouseDown procedure.

Private Sub picDraw_MouseDown(Button As Integer, Shift As
Integer, X As Single, Y As Single)

'Drawing begins

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0610.%20Graphics%20with%20VB.htm (11 of 13) [6/26/02 3:13:33 PM]

0610. Graphics with VB

If Button = vbLeftButton Then

DrawOn = True

picDraw.CurrentX = X

picDraw.CurrentY = Y

End If

End Sub

When drawing ends, the DrawOn switch is toggled in
picDraw_MouseUp.

Private Sub picDraw_MouseUp(Button As Integer, Shift As Integer, X
As Single, Y As Single)

'Drawing ends

If Button = vbLeftButton Then DrawOn = False

End Sub

While mouse is being moved and DrawOn is True, draw lines in
current color in the picDraw_MouseMove procedure.

Private Sub picDraw_MouseMove(Button As Integer, Shift As
Integer, X As Single, Y As Single)

'Drawing continues

If DrawOn Then picDraw.Line -(X, Y), picDraw.ForeColor

End Sub

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0610.%20Graphics%20with%20VB.htm (12 of 13) [6/26/02 3:13:33 PM]

0610. Graphics with VB

Finally, when a label box is clicked, the drawing color is changed in
the lblColor_Click procedure.

Private Sub lblColor_Click(Index As Integer)

'Make audible tone and reset drawing color

Beep

picDraw.ForeColor = lblColor(Index).BackColor

End Sub

Run the application. Click on the label boxes to change the color you
draw with. Fun, huh? Save the application.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0610.%20Graphics%20with%20VB.htm (13 of 13) [6/26/02 3:13:33 PM]

0701. ADO Collection

 ADO Collection

Introduction

The ADO Data control uses Microsoft ADO to quickly create
connections between data-bound controls and data providers. Data-
bound controls are any controls that feature a DataSource property,
including the CheckBox, ComboBox, Image, Label, ListBox,
PictureBox, and TextBox controls. Additionally, Visual Basic
includes several data-bound ActiveX controls such as the DataGrid,
DataCombo, Chart, and DataList controls. You can also create your
own data-bound ActiveX controls, or purchase controls from other
vendors. When you bind controls to an ADO Data control, each field
is automatically displayed and updated when navigating through
records. This is done internally by Visual Basic; you do not have to
write any code.

Library

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0701.%20ADO%20Collection.htm (1 of 13) [6/26/02 3:19:43 PM]

0701. ADO Collection

Data Control

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0701.%20ADO%20Collection.htm (2 of 13) [6/26/02 3:19:43 PM]

0701. ADO Collection

Connecting to a Data Source

At design time, you can create a connection to a data source by
setting the ConnectionString property of the ADO Data control to a
valid connection string. Then, set the RecordSource property to a
table (or SQL statement) from which to retrieve records. Setting
these properties is an easy process because Visual Basic provides
Property Pages to set the values. When setting the ConnectionString
property of the ADO Data control, you have three data source
options.

• Use Data Link File

This option specifies that you are using a custom connection string
that connects to the data source. When this is selected, you can
click Browse to access the Organize Data Sources dialog box, from
which you can select your Data Link file.

• Use ODBC Data Source Name

This option specifies that you are using a system-defined data
source name (DSN) for the connection string. You can access a list

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0701.%20ADO%20Collection.htm (3 of 13) [6/26/02 3:19:43 PM]

0701. ADO Collection

of all system-defined DSNs through the combo box in the Property
Page dialog box, as illustrated in Figure below. When this option is
selected, you can click New to access the Create New Data Source
Wizard dialog box to add to or modify DSNs on the system.

• Use Connection String

This option specifies that you are using a connection string to
access data. If the Use Connection String text box is empty, the
wizard appears, or you can click Build to access the Data Link
Properties dialog box. Use this dialog box to specify the connection,
authentication, and advanced information required to access data
using an OLE DB provider.

Setting a Connection String

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0701.%20ADO%20Collection.htm (4 of 13) [6/26/02 3:19:43 PM]

0701. ADO Collection

In the following procedure, we will focus on using a connection
string to connect to a data source. In this process, you will choose
an OLE DB provider, specify a database name and location, and test
the connection.

To set the ConnectionString property value

1. Place an ADO Data control on a form.

2. On the Properties window, click the ConnectionString
property, then click the ellipsis (&ldots;) to open the Property
Pages.

3. Click on the ellipsis located on the right side of the
ConnectionString property within the Properties window.

4. Click the Use Connection String option, then click Build.

5. Select the Microsoft Jet 3.51 OLE DB Provider, then click
Next.

6. Click the ellipsis to the right of the Select or enter database
name text box to browse the database name.

7. On the Select Access Database dialog box, click Nwind.mdb,
then click Open.

8. Click Test Connection in the Data Link Properties window.

A message box will appear notifying you whether or
not the connection succeeded.

9. Click OK to close the message box, then click OK to close
the Data Link Properties window.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0701.%20ADO%20Collection.htm (5 of 13) [6/26/02 3:19:43 PM]

0701. ADO Collection

A string value will be automatically generated for
the Use Connection String value as illustrated in
Figure 7.8.

10. Click OK to close the ConnectionString Property Pages
window.

Setting the RecordSource Property

After you set the ConnectionString property of the ADO Data control
to connect to a database, you can set the RecordSource property to
establish where the records will come from. The RecordSource
property can be set to either a database table name, a stored query
name, or a Structured Query Language (SQL) statement. To improve
performance, avoid setting the RecordSource property to an entire
table. Set the RecordSource to a n SQL string that retrieves only the
necessary records. An SQL query must use syntax appropriate for
the data source. In other words, Microsoft Access and Microsoft SQL
Server use different SQL syntax; therefore, you must use the
appropriate syntax for the particular database.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0701.%20ADO%20Collection.htm (6 of 13) [6/26/02 3:19:43 PM]

0701. ADO Collection

In the RecordSource property page dialog box, you set the command
type parameter that tells ADO which type of command object to use.
The following table explains the different command type options.

Value Description

adCmdUnknown The type of command in the CommandText
property is not known. This is the default value.

adCmdText Evaluates CommandText as a textual definition
of a command or stored procedure call.

adCmdTable Evaluates CommandText as a table name whose
columns are all returned by an internally
generated SQL query.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0701.%20ADO%20Collection.htm (7 of 13) [6/26/02 3:19:43 PM]

0701. ADO Collection

adCmdStoredProc Evaluates CommandText as a stored procedure
name. This can be a stored procedure in a SQL
Server database or a query in an Access
database.

Binding Controls

After you set the ConnectionString and RecordSource properties for
the ADO Data control, you can add a bound control to display data
on your form.

A bound control is one that is "data-aware." When an ADO Data
control moves from one record to the next, either through code or
when the user clicks the ADO Data control arrows, all bound
controls connected to the ADO Data control change to display data
from fields in the current record. In addition, if the user changes the
data in the bound control, those changes are automatically posted to
the database as the user moves to another record. The benefit of
using bound controls is that it minimizes the amount of code you
must write. Because the value of the bound control is automatically
retrieved from and written to the database, there is little or no
programming involved.

• The type of control depends on the type of data stored in the
field.

Data Type Control

String, date, and numeric TextBox

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0701.%20ADO%20Collection.htm (8 of 13) [6/26/02 3:19:43 PM]

0701. ADO Collection

Boolean CheckBox

Memo fields Multi-line TextBox

Binary data OLE Container

Picture PictureBox

Setting the DataSource and DataField Properties

In order to bind a control to an ADO Data control, you must set the
DataSource and DataField properties of the bound control. The
DataSource property specifies the source through which the control
is bound to the database (for example, an ADO Data control).

The DataField property specifies a valid field name in the Recordset
object created by the data source. This value determines which field
is displayed in the bound control. The DataSource and DataField
properties can be set at design time in the Properties window. You
can also set the DataSource and DataField properties at run time. If
you set the DataSource property at run time using code, you must
use the Set keyword because the DataSource property is an object.
The following example sets the DataSource and DataField
properties:

Set txt1.DataSource = Adodc1

txt1.DataField = "CompanyName"

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0701.%20ADO%20Collection.htm (9 of 13) [6/26/02 3:19:43 PM]

0701. ADO Collection

ADODB in detail

The following code is added to declare a connection object and a
recordset object to access a database.

Dim cn as ADODB.Connection

Dim rs as ADODB.Recordset

cn = connection object which varry from data provider to provider

rs = recordset object is used to access data from table where connection
object is used to direct recordset for table. Syntex for this:

rs.open sql, cn, adOpenForwardOnly, adLockReadOnly

here we notice that several parameters are required to opne the
recordset. The forst parameter passes the SQL query to the recordset.
The second paramenter, cn, tells the recordset to use the connection
object cn to get to the database. The next paramenter tells ADO which
type of database cursor to use on the recordset. ADO can use many types
of cursors. The table below lists the possible options and what they do:

Cursor Type Desciption

AdOpenForwardOnly This type of cursor can only be used to move
forward through the recordset. This option is
used when a listbox or combo box is to be
populated.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0701.%20ADO%20Collection.htm (10 of 13) [6/26/02 3:19:43 PM]

0701. ADO Collection

AdOpenKeyset This is the best type of cursor to use when we
expect a large recordset because we are not
informed when changes are made to data that
can affect out recordset.

AdOpenDynamic This cursor allows us to see all the changes
made by other users that affect our recordset. It
is the most powerful type of cursor but the
slowest one.

AdOpenStatic The static cursor is useful when we have a small
recordset.

The last parameter tells ADO that we want the recordset to be read
only.

LockType Description

AdLockReadOnly This lock mode is used when no additions,
updates or deletions are allowed from the
recordset.

AdLockPesimistic In pessimistic locking, the record is locked as
soon as editing begins and remains locked
until editing is completed, or the cursor moves
to another record.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0701.%20ADO%20Collection.htm (11 of 13) [6/26/02 3:19:43 PM]

0701. ADO Collection

AdLockOptimistic This occurs when the .Update method is
called on the record. The record is unlocked
even while we edit, but is temporarily locked
when the changes are saved to the database.

AdLockBatchOptimistic This option allows us to perform optimistic
locking when we are updating a batch of
records.

Lesson Summary

• The ADO Data control is a graphic control (with record
navigation buttons) and an easy-to-use interface that allows you
to create database applications with a minimum of code. To use
the ADO Data control in Visual Basic 6.0, you must add it to the
toolbox.

• At design time, you can create a connection to a data source
by setting the ConnectionString property of the ADO Data
control to a valid connection string. After you set the
ConnectionString property of the ADO Data control to connect
to a database, you can set the RecordSource property to
establish where the records will come from.

• Once you have set the ConnectionString and RecordSource
properties for the ADO Data control, you can add a bound

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0701.%20ADO%20Collection.htm (12 of 13) [6/26/02 3:19:43 PM]

0701. ADO Collection

control to display data on your form.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0701.%20ADO%20Collection.htm (13 of 13) [6/26/02 3:19:43 PM]

0702. ADO Example

 ADO Bound programming (Example: 1)

Screen

Table

SrNo Object Name Type Properties

1 txtEmpNo Textbox .FontSize = 10

Datasource : Ado1

Datafield : EMPNO

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0702.%20ADO%20Example.htm (1 of 10) [6/26/02 3:19:46 PM]

0702. ADO Example

2 txtEname Textbox .FontSize = 10

Datasource : Ado1

Datafield : ENAME

3 txtJob Textbox .FontSize = 10

Datasource : Ado1

Datafield :JOB

4 cmdAdd Command
Button

.Caption "ADD"

5 cmdSave Command
Button

.Caption "SAVE"

6 cmdDelete Command
Button

.Caption "Delete"

7 cmdFirst Command
Button

.Caption "<<"

8 cmdPrev Command
Button

.Caption "<"

9 cmdNext Command
Button

.Caption ">"

10 cmdLast Command
Button

.Caption ">>"

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0702.%20ADO%20Example.htm (2 of 10) [6/26/02 3:19:46 PM]

0702. ADO Example

11 Form1 Form .Border style 1 - Fixed
Single

12 Label 1 , Label 2,
Label 3

Labels FontBold = True

.FontSize = 8

.Autosize = True

ADO UnBound programming (Example: 2)
Screen

Table

SrNo Object Name Type Properties

1 txtCuId Textbox .FontSize = 10

2 txtName Textbox .FontSize = 10

3 txtPhone Textbox .FontSize = 10

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0702.%20ADO%20Example.htm (3 of 10) [6/26/02 3:19:46 PM]

0702. ADO Example

4 cmdAdd Command
Button

.Caption "ADD"

5 cmdSave Command
Button

.Caption "SAVE"

6 cmdDelete Command
Button

.Caption "Delete"

7 cmdFirst Command
Button

.Caption "<<"

8 cmdPrev Command
Button

.Caption "<"

9 cmdNext Command
Button

.Caption ">"

10 cmdLast Command
Button

.Caption ">>"

11 frmADOUnbound Form .Caption ADO UnBound
sample

Border style 1 - Fixed
Single

12 Label 1 , Label 2,
Label 3

Labels FontBold = True

.FontSize = 8

.Autosize = True

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0702.%20ADO%20Example.htm (4 of 10) [6/26/02 3:19:46 PM]

0702. ADO Example

Code

Option Explicit

'---connection object

Dim db As New ADODB.Connection

'---recordset object

Dim rs As New ADODB.Recordset

Private Sub cmdAdd_Click()

'---adds new record in the database

rs.AddNew

'---keep textboxes clean for user entry

txtCuId.Text = vbNullString

txtName.Text = vbNullString

txtPhone.Text = vbNullString

End Sub

Private Sub cmdDelete_Click()

'---deletes record from database

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0702.%20ADO%20Example.htm (5 of 10) [6/26/02 3:19:46 PM]

0702. ADO Example

rs.Delete

'---keep textboxes clean for user entry

txtCuId.Text = vbNullString

txtName.Text = vbNullString

txtPhone.Text = vbNullString

End Sub

Private Sub cmdFirst_Click()

'---moves cursor to first record

rs.MoveFirst

'---assign data to text boxes

Data

End Sub

Private Sub cmdLast_Click()

'---moves cursor to last position

rs.MoveLast

'---assign data to text boxes

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0702.%20ADO%20Example.htm (6 of 10) [6/26/02 3:19:46 PM]

0702. ADO Example

Data

End Sub

Private Sub cmdNext_Click()

'---check record is last or not (EOF = End of file)

If rs.EOF = False Then

 rs.MoveNext

 If rs.EOF = False Then

 '---assign data to text boxes

 Data

 End If

End If

End Sub

Private Sub cmdPrev_Click()

'---check record is First or not (BOF = Beginning of file)

If rs.BOF = False Then

 rs.MovePrevious

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0702.%20ADO%20Example.htm (7 of 10) [6/26/02 3:19:46 PM]

0702. ADO Example

 If rs.BOF = False Then

 Data

 End If

End If

End Sub

Private Sub cmdSave_Click()

'---assign value from textbox to recordset

rs("CustomerID") = txtCuId.Text

rs("CompanyName") = txtName.Text

rs("Phone") = txtPhone.Text

'---update record

rs.Update

End Sub

Private Sub Form_Load()

'---Open database connection

db.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:\Program Files\Microsoft Visual

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0702.%20ADO%20Example.htm (8 of 10) [6/26/02 3:19:46 PM]

0702. ADO Example

Studio\VB98\Nwind.mdb;Persist Security Info=False"

'---open recordset for table data

rs.Open "select * from Customers", db, adOpenStatic,
adLockOptimistic

'---if record available then assign first record to text boxes

If rs.RecordCount > 0 Then

 Data

End If

End Sub

Private Sub Data()

'---private function/ procedure to assign data from recordset
to textbox

txtCuId.Text = rs("CustomerID")

txtName.Text = rs("CompanyName")

txtPhone.Text = rs("Phone")

End Sub

Private Sub Form_Unload(Cancel As Integer)

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0702.%20ADO%20Example.htm (9 of 10) [6/26/02 3:19:46 PM]

0702. ADO Example

'---close record set

rs.Close

'---release memory

Set rs = Nothing

'---close database connection

db.Close

Set db = Nothing

End Sub

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0702.%20ADO%20Example.htm (10 of 10) [6/26/02 3:19:46 PM]

0703. DAO Collection

 DAO Collection

Introduction

DAO is an object-oriented interface to Microsoft Jet, the engine that
powers Access. Developers can design an MDB database using
Access and then use DAO from a Visual Basic application to open
the database, add and retrieve records, and manage transactions.
The best thing about DAO is that it doesn't limit you to Jet databases
because you can directly open any database for which an ODBC
driver exists. Or you can use Jet attached tables, which are virtual
tables that appear to belong to an MDB database but actually
retrieve and store data in other ODBC sources.

Even if you can use DAO to access non-Jet sources, you can clearly
see that it was devised with Access databases in mind. For example,
even if your application doesn't use MDB databases, you still have to
load the entire Jet engine DLL in memory. (And you also have to
distribute it to your users). Even worse, DAO doesn't expose many
of the capabilities that you could use if working directly with ODBC
API functions. For example, you can't perform asynchronous queries
or connections using DAO, nor can you work with multiple result
sets.

This control lets you bind one or more controls on a form to a data
source and offers buttons for navigating through the records of the
database table you've connected to. At first, it seems that the Data
control is a great tool because it lets you quickly create effective

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0703.%20DAO%20Collection.htm (1 of 9) [6/26/02 3:19:49 PM]

0703. DAO Collection

user interfaces to work with your data. After some testing, however,
developers tend to abandon the Data control because its many
limitations are difficult to overcome. Apart from performance
considerations, the Data control has one serious disadvantage: It
ties your front-end applications to the data in the back-end database.
If you later want to access data in another database, you have to
revise all the forms in your application. If you want to add complex
validation rules to database fields, you must add code in every
single module of the program. These (and other problems) are the
typical defects of a 2-tier architecture, which in fact is being
abandoned in favor of 3-tier (or n-tier) architectures, where one or
more intermediate layers between the application and the database
provide services such as data validation, business rules, workload
balance, and security. Alas, if you want to embrace the n-tier
philosophy, you should forget about the Data control.

Visual Basic 4 included the improved DAO 3.0 version, which
features a special DLL that allows programmers who work with 32-
bit technology to access 16-bit databases. Visual Basic 5
programmers can use DAO 3.5. In the Visual Basic 6 package, you'll
find DAO 3.51, which is substantially similar to the previous one.
This suggests that Microsoft doesn't plan to improve DAO further,
even though version 4 has been announced for Microsoft Office
2000.

Library

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0703.%20DAO%20Collection.htm (2 of 9) [6/26/02 3:19:49 PM]

0703. DAO Collection

Data Control

Accessing and Navigating Databases

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0703.%20DAO%20Collection.htm (3 of 9) [6/26/02 3:19:49 PM]

0703. DAO Collection

in order to work with data access objects, a reference has to be set
to the appropriate DAO library, There are two DAO libraries
supported by Visual Basic 6.0. They are:

• Microsoft DAO 3.51 Objects library

• Microsoft DAO 2.5/3.51 Compitibility Layer

Opening a Database

To open an existing database, the OpenDatabase method of the
workspace is used.

OpenDatabase (dbname, [options], [readonly], [connect])

The following code opens the employee_details database.

Dim db as database

Set db = OpenDatabase ("employee_details")

In the above code,db is a variable that represents the Database
objects. By default, a database that is opened can be shared and
modified by any user. To specify that the database is to be opened
for exclusive use, the following statement can be used:

Set db = OpenDatabase ("employee_details " ,True)

In the above statement the TRUE value indicates that no other users will
be able to open the database. The default value is False.

To open the employee_details database in the read only mode, the
following statement is used:

Set db = OpenDatabase ("employee_details ",False,True)

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0703.%20DAO%20Collection.htm (4 of 9) [6/26/02 3:19:49 PM]

0703. DAO Collection

In the above statement , the TRUE value specified as the third argument
will provide only a read access on the database.

Recordset

A Recordset is an object that contains a set of records from the
database.There are majorly five type of Recordset objects:

• Table-Type Recordset

The table_type recordset object is a set of records that represents a single
table which can be used to add, change or delete records. They are the
fastest type of recordset.

• Dynaset-Type Recordset

The dynaset-type of Recordset object is a set of records that represents a
table, or attached tables, or the results of queries containing fields from
one or more tables. A Dynaset enables us to update data from more than
one table.

• Snapshot-Type Recordset

The snapshot-Type Recordset can refer any table, attached table or
query. A snapshot cannot be updated and does not reflect changes to
data made by the users.

• Dynamic Type Recordset

This Recordset type represents a query result set from one or more base
tables in which we add, change , or delete records from a row-returning
query.Further ,records that other user add , delete, or edit in the base
tables also appear in our Recordset. This type is only available in
ODBCDirect workspaces, and corresponds to an ODBC dynamic cursor.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0703.%20DAO%20Collection.htm (5 of 9) [6/26/02 3:19:49 PM]

0703. DAO Collection

• Forward Only Type Recordset

This Recordset type is identical to a snapshot except that we can only
scroll forward through its records.This improves performance in situations
where we only need to make a single pass through a result set. In an
ODBCDirect workspace, this type corresponds to an ODBC forward_only
cursor.

Creating a Recordset

The OpenRecordset method is used to open a Recordset and create a
Recordset variable.

Example

To create a read-only Recordset for the table employee, the following
code is used:

Dim rs as Recordset

Set rs = db.OpenRecordset("employee", dbOpentable, dbReadonly)

In the above statement, db is the variable that represents the Database
object. Here dbOpenTable specifies the type of Recordset to be created.

Navigating a Recordset

After creating a Recordset object, the various Move methods can be used
to navigate through the records in a Reocrdset.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0703.%20DAO%20Collection.htm (6 of 9) [6/26/02 3:19:49 PM]

0703. DAO Collection

MoveFirst moves to the first row in the Recordset.

MoveNext moves to the next row in the reocrdset.

MovePrevious method moves to the previous row in the recordset

MoveLast method moves to the last row in the recordset.

Using BOF and EOF to Navigate through Recordsets

The Recordset object provides two properties for the user to know when
he has moved to the begining or end of the recordset.

• The EOF (End of File) property is True when the user moves
beyond the last record in the recordset.

• The BOF (Begining of File) property is True when the user has
moved to a position before the first record in the recordset.

Modifying and Deleting Records

To manipulate a record in a recordset, the following methods are used.

Edit Method : The user can edit the current record using the Edit method.
The Update method is used to save the necessary changes made to the
record.

AddNew Method : AddNew method is used to create a new record in the
database.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0703.%20DAO%20Collection.htm (7 of 9) [6/26/02 3:19:49 PM]

0703. DAO Collection

Delete Method : This method can be used to delete an existing record in
the dynaset-type or table-type Recordset. The Jet engine deletes the
current record without any warning when the Delete method is used.

Finding Records

The Find method can be used to locate a record in a dynaset-type or
snapshot-type Recordset.Visual Basic supports four Find methods.

FindFirst method finds the first record satisfying the specified
criteria.

FindLast method finds the last record satisfying the specified
criteria.

FindNext method finds the next record satisfying the specified
criteria,searching forward from the current record.

FindPrevious method finds the previous record satisfying the
specified criteria, searching backward from the current
record.

When the database engine finds a match for the criteria that is specified, it
moves to that record. If no match is found, the current record is
unchanged and the Recordset object's No Match property is set to True.

Performing Indexed Searches Using the Seek Method

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0703.%20DAO%20Collection.htm (8 of 9) [6/26/02 3:19:49 PM]

0703. DAO Collection

The Seek Method can be used to locate a record in a table-type
Reocrdset.This method performs an indexed search for the first
occurence of the record that matches the indexed criteria.Dynasets and
Snapshots cannot use the Seek method.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0703.%20DAO%20Collection.htm (9 of 9) [6/26/02 3:19:49 PM]

0704. DAO Example

 DAO Bound programming (Example: 1)

Screen

Table

Sr No Object Name Type Properties

1 txtAuId TextBox .FontSize = 10

DataSource = Data1

DataField = Au_Id

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0704.%20DAO%20Example.htm (1 of 8) [6/26/02 3:19:52 PM]

0704. DAO Example

2 txtAuthor TextBox .FontSize = 10

DataSource = Data1

DataField = Author

3 txtYearBorn TextBox .FontSize = 10

DataSource = Data1

DataField = Year Born

4 Data1 Data
Control

Name = Data1

DatabaseName = "C:\Program
Files\Microsoft Visual
Studio\VB98\Biblio.mdb"

RecordSource = Authors

5 frmAuthor Form BorderStyle = 1 - Fixed Single

Caption = "Author Details"

6 label1, label2,
label3

Labels .FontBold = True

.FontSize = 8

DAO UnBound programming (Example: 2)

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0704.%20DAO%20Example.htm (2 of 8) [6/26/02 3:19:52 PM]

0704. DAO Example

Screen

Table

Sr No Object Name Type Properties

1 txtAuId TextBox .FontSize = 10

2 txtAuthor TextBox .FontSize = 10

3 frmAuthor Form BorderStyle = 1 - Fixed Single

Caption = "Author Details"

4 cmdAdd Command
Button

.Caption = "Add"

5 cmdSave Command
Button

.Caption = "Save"

6 cmdDelete Command
Button

.Caption = "Delete"

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0704.%20DAO%20Example.htm (3 of 8) [6/26/02 3:19:52 PM]

0704. DAO Example

7 cmdFirst Command
Button

.Caption = "<<"

8 cmdPrev Command
Button

.Caption = "<"

9 cmdNext Command
Button

.Caption = ">"

10 cmdLast Command
Button

.Caption = ">>"

11 label1, label2,
label3

Labels .FontBold = True

.FontSize = 8

Code

Option Explicit

'---required variable declaration

Dim db As Database

Dim rs As Recordset

Private Sub cmdAdd_Click()

'---generates new record in database

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0704.%20DAO%20Example.htm (4 of 8) [6/26/02 3:19:52 PM]

0704. DAO Example

rs.AddNew

End Sub

Private Sub cmdDelete_Click()

'---deletes record

rs.Delete

'---sets text box clean for user

txtAuId.Text = ""

txtAuthor.Text = ""

End Sub

Private Sub cmdFirst_Click()

'---sets recordset to first record

rs.MoveFirst

'---assigns record to text boxes

txtAuId.Text = rs("Au_Id")

txtAuthor.Text = rs("Author")

End Sub

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0704.%20DAO%20Example.htm (5 of 8) [6/26/02 3:19:52 PM]

0704. DAO Example

Private Sub cmdLast_Click()

'---sets recordsets to last record

rs.MoveLast

'---assigns record to text boxes

txtAuId.Text = rs("Au_Id")

txtAuthor.Text = rs("Author")

End Sub

Private Sub cmdNext_Click()

'---sets recordsets to next record

rs.MoveNext

'---assigns record to text boxes

txtAuId.Text = rs("Au_Id")

txtAuthor.Text = rs("Author")

End Sub

Private Sub cmdPrev_Click()

'---sets recordsets to previous record

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0704.%20DAO%20Example.htm (6 of 8) [6/26/02 3:19:52 PM]

0704. DAO Example

rs.MovePrevious

'---assigns record to text boxes

txtAuId.Text = rs("Au_Id")

txtAuthor.Text = rs("Author")

End Sub

Private Sub cmdSave_Click()

'---assign text box values to recordset

rs("Au_id") = txtAuId.Text

rs("Author") = txtAuthor.Text

'---update in database

rs.Update

End Sub

Private Sub Form_Load()

'---open database object

Set db = OpenDatabase("C:\Program Files\Microsoft Visual
Studio\VB98\Biblio.mdb")

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0704.%20DAO%20Example.htm (7 of 8) [6/26/02 3:19:52 PM]

0704. DAO Example

'---fatch records in recordset

Set rs = db.OpenRecordset("Authors", dbOpenDynaset)

End Sub

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0704.%20DAO%20Example.htm (8 of 8) [6/26/02 3:19:52 PM]

0804. Types of Errors

 Types of Errors

Debugging in Visula Basic

Debugging is the process by which errors are identified and
resolved in source code.Typically, debugging is conducted at
various levels. This chapter identifies at least three levels of
debugging that occur in virtually every software program of any size.

Handling Logical errors

The first level of debugging is the implementation of a debugging
procedure and the necesary tuning to make it operate as expected.
Logical errors occur when the application dosen't perform as intended and
produces incorrect results. For example, when a programmer sets to write
a procedure, he/she would have in mind only the expected output of that
procedure, i.e the programmer knows the procedure is supposed to
acomplish, but has not yet determined the optimal method of coding its
functionality.

Runtime error

Second-level debugging is the activity requried to make a functional unit
of code interact according to plan with other units of code, typically before
shipping or deploying the completed project.Generally the condition arises
when our procedure does not run properly in a test case.

Human Errors

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0804.%20Types%20of%20Errors.htm (1 of 2) [6/26/02 3:23:29 PM]

0804. Types of Errors

is priliminary the diagnosis and repair of problems occuring in applications
that have already been deployed. These bugs are often the most difficult
to locate because they occur on a remote machine. They may be the
result of unanticipated circumstances, such as:

User actions (keystrokes, menu choices, options settings)

Program configurationn (option settings,states, call stack)

System configuration (operating system versions, system DLL versions,
disk space memory drivers and so on)

Areas of occurrence of Bugs

In Visual Basic,errors can occur anywhere during the entire
development cycle such as

• Design Time

• Compile Time

• Run Time

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0804.%20Types%20of%20Errors.htm (2 of 2) [6/26/02 3:23:29 PM]

0807. Syntex Error

 Design Time Bugs

Errors that occur in the IDE and before the program is compiled are called
design-time bugs.These are the most common ones.These bugs are
caused by misuse of some component.

The following example shows that while you declare 'xy' variable and
going to check condition for the same and you omit "Then" expression
which is required, that time design time error occurs which is displayed
the moment the user navigates to the next statement.

Private Sub Command1_Click()

Dim xy as integer

xy = 11

If xy = 10

...........

End Sub

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0807.%20Syntex%20Error.htm (1 of 2) [6/26/02 3:23:31 PM]

0807. Syntex Error

This type of error can be trapped using Auto Syntax Check option in
option dialog box, which is shown below

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0807.%20Syntex%20Error.htm (2 of 2) [6/26/02 3:23:31 PM]

0809. Logical Error

 Run time errors

• A visual Basic runtime error is the exception generated by
Visual Basic when it acertains that the code is about to perform
something illegal. An illegal function could be something as
simple as trying to determine the size of a file that does not exist
or attempting to multiply two numbers, the result of wwhich
exceeds the storage space that could be contained by the
datatype.

However, using an error handler could prevent this error dialogue
box from being shown and save the progam from crashing. By
practice we can also use out knowledge that a particualr error
identified by its error number will be generated to help guide our
logic. This sort of "inline" error handling is very powerful and can be
handled using an error handler that checks for the condition of say
Eror 11, and then does something to circumvent the situation. This
error can be finally rectified by changing the code suitably.

Example:

Consider the following example where we declare two variables x and y.
Try dividing x (assigned a value 9) by y (assigned 0) assigning the
quotient to another variable z.

Private Sub Form_Load()

Dim x As Integer

Dim y As Integer

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0809.%20Logical%20Error.htm (1 of 2) [6/26/02 3:23:33 PM]

0809. Logical Error

Dim z As Integrer

x = 9

y = 0

z = x / y

End Sub

On executing the above application, a run time error is reported as shown
in Example. indicating a division operation by zero which is not possible.

Note:

This type of Error can be handled using Err object which is
explained in next topic.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0809.%20Logical%20Error.htm (2 of 2) [6/26/02 3:23:33 PM]

0808. Run Time Error

 Complie-Time Error

Compile-time bugs are those that occur when we attempt to create
the program executable file (EXE) or run the project. Visual Basic
can locate compile-time bugs if the Visual Basic application is set up
correctly. Visual Basic sets several options for the users, which can
be changed as needed.

Compile-time bugs are detected by Visual Basic automatically when
the program is compiled using F5. If the Start With Full Compile
options is not used, the ?Compile On Demand can be turned on, and the
developer will not find many bugs until the line of code with the bug is
actually executed.

Compile errors occur as a result of incorrectly constructed code such as a
Next statement without a corresponding For statement or programming
mistakes that violate the rules of Basic, such as a mispelt word, missing
separator, or type mismatch. Compile errors include syntax errors. These
include mismatched parentheses or an incorrect number of arguments
passed to an intinsic function.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0808.%20Run%20Time%20Error.htm [6/26/02 3:23:34 PM]

0805. Err Object

 Err Object

• Run-time errors are trappable. That is, Visual Basic
recognizes an error has occurred and enables you to trap it and
take corrective action. If an error occurs and is not trapped, your
program will usually end in a rather unceremonious manner.

• Error trapping is enabled with the On Error statement:

On Error GoTo errlabel

Yes, this uses the dreaded GoTo statement! Any time a run-
time error occurs following this line, program control is
transferred to the line labeled errlabel. Recall a labeled line is
simply a line with the label followed by a colon (:).

• The best way to explain how to use error trapping is to look
at an outline of an example procedure with error trapping.

Sub SubExample()

 [Declare variables, ...]

On Error GoTo HandleErrors

 [Procedure code]

Exit Sub

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0805.%20Err%20Object.htm (1 of 10) [6/26/02 3:23:37 PM]

0805. Err Object

HandleErrors:

 [Error handling code]

End Sub

 Once you have set up the variable declarations, constant
definitions, and any other procedure preliminaries, the On
Error statement is executed to enable error trapping. Your
normal procedure code follows this statement. The error
handling code goes at the end of the procedure, following
the HandleErrors statement label. This is the code that is
executed if an error is encountered anywhere in the Sub
procedure. Note you must exit (with Exit Sub) from the code
before reaching the HandleErrors line to avoid inadvertent
execution of the error handling code.

• Since the error handling code is in the same procedure
where an error occurs, all variables in that procedure are
available for possible corrective action. If at some time in your
procedure, you want to turn off error trapping, that is done with
the following statement:

On Error GoTo 0

• Once a run-time error occurs, we would like to know what the
error is and attempt to fix it. This is done in the error handling
code.

• · Visual Basic offers help in identifying run-time errors. The
Err object returns, in its Number property (Err.Number), the
number associated with the current error condition. (The Err
function has other useful properties that we won't cover here -
consult on-line help for further information.) The Error() function
takes this error number as its argument and returns a string

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0805.%20Err%20Object.htm (2 of 10) [6/26/02 3:23:37 PM]

0805. Err Object

description of the error. Consult on-line help for Visual Basic run-
time error numbers and their descriptions

• Once an error has been trapped and some action taken,
control must be returned to your application. That control is
returned via the Resume statement. There are three options

Resume

Lets you retry the operation that caused the
error. That is, control is returned to the line
where the error occurred. This could be
dangerous in that, if the error has not been
corrected (via code or by the user), an
infinite loop between the error handler and
the procedure code may result.

Resume Next

Program control is returned to the line
immediately following the line where the
error occurred.

Resume label

Program control is returned to the line
labeled label.

• Be careful with the Resume statement. When executing the
error handling portion of the code and the end of the procedure
is encountered before a Resume, an error occurs. Likewise, if a
Resume is encountered outside of the error handling portion of
the code, an error occurs.

General Error Handling Procedure

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0805.%20Err%20Object.htm (3 of 10) [6/26/02 3:23:37 PM]

0805. Err Object

• Development of an adequate error handling procedure is
application dependent. You need to know what type of errors you
are looking for and what corrective actions must be taken if
these errors are encountered. For example, if a 'divide by zero' is
found, you need to decide whether to skip the operation or do
something to reset the offending denominator.

• What we develop here is a generic framework for an error
handling procedure. It simply informs the user that an error has
occurred, provides a description of the error, and allows the user
to Abort, Retry, or Ignore. This framework is a good starting point
for designing custom error handling for your applications.

• The generic code (begins with label HandleErrors) is:

HandleErrors:

Select Case MsgBox(Error(Err.Number), vbCritical +
vbAbortRetryIgnore, "Error Number" + Str(Err.Number))

 Case vbAbort

 Resume ExitLine

 Case vbRetry

 Resume

 Case vbIgnore

 Resume Next

End Select

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0805.%20Err%20Object.htm (4 of 10) [6/26/02 3:23:37 PM]

0805. Err Object

ExitLine:

Exit Sub

Let's look at what goes on here. First, this routine is only executed
when an error occurs. A message box is displayed, using the Visual
Basic provided error description [Error(Err.Number)] as the message,
uses a critical icon along with the Abort, Retry, and Ignore buttons,
and uses the error number [Err.Number] as the title. This message
box returns a response indicating which button was selected by the
user. If Abort is selected, we simply exit the procedure. (This is done
using a Resume to the line labeled ExitLine. Recall all error trapping
must be terminated with a Resume statement of some kind.) If Retry
is selected, the offending program line is retried (in a real application,
you or the user would have to change something here to correct the
condition causing the error). If Ignore is selected, program operation
continues with the line following the error causing line.

• To use this generic code in an existing procedure, you need
to do three things:

1. Copy and paste the error handling code into the end of
your procedure.

2. Place an Exit Sub line immediately preceding the
HandleErrors labeled line.

3. Place the line, On Error GoTo HandleErrors, at the
beginning of your procedure.

For example, if your procedure is the SubExample seen earlier, the
modified code will look like this:

Sub SubExample()

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0805.%20Err%20Object.htm (5 of 10) [6/26/02 3:23:37 PM]

0805. Err Object

.[Declare variables, ...]

On Error GoTo HandleErrors

 [Procedure code]

Exit Sub

HandleErrors:

Select Case MsgBox(Error(Err.Number), vbCritical +
vbAbortRetryIgnore, "Error Number" + Str(Err.Number))

 Case vbAbort

 Resume ExitLine

 Case vbRetry

 Resume

 Case vbIgnore

 Resume Next

End Select

ExitLine:

Exit Sub

End Sub

Again, this is a very basic error-handling routine. You must
determine its utility in your applications and make any modifications
necessary. Specifically, you need code to clear error conditions

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0805.%20Err%20Object.htm (6 of 10) [6/26/02 3:23:37 PM]

0805. Err Object

before using the Retry option.

• One last thing. Once you've written an error handling routine,
you need to test it to make sure it works properly. But, creating
run-time errors is sometimes difficult and perhaps dangerous.
Visual Basic comes to the rescue! The Visual Basic Err object
has a method (Raise) associated with it that simulates the
occurrence of a run-time error. To cause an error with value
Number, use:

 Err.Raise Number

• We can use this function to completely test the operation of
any error handler we write. Don't forget to remove the Raise
statement once testing is completed, though! And, to really get
fancy, you can also use Raise to generate your own 'application-
defined' errors. There are errors specific to your application that
you want to trap.

• To clear an error condition (any error, not just ones
generated with the Raise method), use the method Clear:

Err.Clear

Example

Simple Error Trapping

1. Start a new project. Add a text box and a command button.

2. Set the properties of the form and each control:

Sr No Object Name Properties

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0805.%20Err%20Object.htm (7 of 10) [6/26/02 3:23:37 PM]

0805. Err Object

1 Form 1 BorderStyle : 1-Fixed Single

Caption : Error Generator

Name : Error

2 Command 1 Caption :Generate Error

 Default : True

 Name : cmdGenError

3 Text 1 Name : txtError

 Text : {Blank]

 The form should look something like this:

3. Attach this code to the cmdGenError_Click event.

 Private Sub cmdGenError_Click()

 On Error GoTo HandleErrors

 Err.Raise Val(txtError.Text)

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0805.%20Err%20Object.htm (8 of 10) [6/26/02 3:23:37 PM]

0805. Err Object

 Err.Clear

 Exit Sub

 HandleErrors:

 Select Case MsgBox(Error(Err.Number), vbCritical +
vbAbortRetryIgnore, "Error Number" + Str(Err.Number))

 Case vbAbort

 Resume ExitLine

 Case vbRetry

 Resume

 Case vbIgnore

 Resume Next

 End Select

 ExitLine:

 Exit Sub

 End Sub

 In this code, we simply generate an error using the number input in
the text box. The generic error handler then displays a message box
which you can respond to in one of three ways.

 4. Save your application. Try it out using some of these typical error
numbers (or use numbers found with on-line help). Notice how
program control changes depending on which button is clicked.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0805.%20Err%20Object.htm (9 of 10) [6/26/02 3:23:37 PM]

0805. Err Object

Error Number Error Description

6 Overflow

9 Subscript out of range

11 Division by zero

13 Type mismatch

16 Expression to complex

20 Resume with Error

52 Bad file name or number

53 File not found

55 File already open

61 Disk Full

70 Permission denied.

92 For loop not initialized

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0805.%20Err%20Object.htm (10 of 10) [6/26/02 3:23:37 PM]

0810. Error Trapping Options in VB

 Error Trapping Options in VB

Visual Basic Debugging Tools

The best way to keep bugs out is to prevent them in the first place. Visual
Basic gives a programmer several tools, including IDE options and
compile directives, to help achieve this goal.

IDE Options

Visual Basic offers several IDE options that can help the user write better
code.

• Auto Syntax Check

• Require Variable Declaration

• Auto List Members

• Auto Quick Info

• Auto data tips

• Option Explicit

• Option Compare Text

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0810.%20Error%20Trapping%20Options%20in%20VB.htm (1 of 10) [6/26/02 3:23:41 PM]

0810. Error Trapping Options in VB

Additional settings and debugging aids can be viewed in a dialogue box
shown in the Fig given below using the followwing steps

• Select options from Tools menu

• Choose the Editor tab in the options dialogue box.

Debugging tools are designed to help the user with logic and run-
time errors. Visual Basic provides several buttons in the ToolBar

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0810.%20Error%20Trapping%20Options%20in%20VB.htm (2 of 10) [6/26/02 3:23:41 PM]

0810. Error Trapping Options in VB

that are helpful for debugging. They are

• BreakPoint - Defines a line in the Code Window where Visual
Basic suspends execution of application.

• Instant Watch - Lists the current value of an expression while the
application is in the breakmode.

• Calls - Presents a dialogue box that shows all procedures that
have been called but not yet run completely.

Stepping

Visual Basic provides several built-in methods for controlling the
execution of the program in real time. It is possible to execute the
program line-by-line or procedure-by-procedure or a combination
of the two. These basic debugging actions are called Stepping.
Because it enables the developer to walk through the program,
examining the variables and logic. Stepping is the most powerful
debugging tool offered by Visual Basic. The various Debug
commands are discussed below.

• Step Into - Executes the next executable line of the code in the
application and steps into procedures.Step into moves program
execution to the procedure called by the method or property the
cursor is currently pointing at. This option can be accessed from the
Debug menu or by pressing F8. This enables to check every line of
code as it is being executed

• Step Over -

Similar to Step Into. The difference in use occurs
when the current statement contains a call to a
procedure.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0810.%20Error%20Trapping%20Options%20in%20VB.htm (3 of 10) [6/26/02 3:23:41 PM]

0810. Error Trapping Options in VB

Step Over executes the procedure as a unit, and
then steps to the next statement in the current
procedure. Therefore, the next statement displayed
is the next statement in the current procedure
regardless of whether the current statement is a call
to another procedure. Available in break mode only.

• Step Out - Moves program execution back to the calling
procedure.This is the functional equivalent of Exit Sub or Exit
Function. It simply exists the current procedure without executing any
more code in that procedure.

While debugging an application, we should clearly understand
which of the three modes such as design time, run time or break
mode we are in at a given time. Break mode of an application is
viewed by clicking CTRL+BREAK at run time.

Using the Debug Window

Debug window is one of Visual Basic's windows that allows to run
individual commands immediately, by typing in the command and
pressing the Enter key. It automatically opens at run time.

• In break mode, the Debug window can be used to execute
individual lines of code, view or change values of variales and
properties, and view watch expressions.

• At run time , it can be used to display data or messages as the
program runs.

• At design time, the developer can view the previous output to the
Debug window, but cannot execute code.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0810.%20Error%20Trapping%20Options%20in%20VB.htm (4 of 10) [6/26/02 3:23:41 PM]

0810. Error Trapping Options in VB

The Debug Window has two parts - Watch Window and Immediate
Window.The split bar separates the Debug window into two panes.The
upper pane displays the Watch Window.The lower pane displays the
Immmediate Window.

Watch Window

Watch pane displays the current watch expressions, which are
expressions whose values are decided by the user as the code is
executed.The Watch pane appears automatically if the watch expressions
are defined in the project. At times we might want to monitor the value of a
variable for a certain state-for example to determine whether a flag is set
to True.

Monitoring Data with Watch Expressions

Many debugging problems are bot traced immediately with a single
statement. So, we need to observe the behaviour of a variable or an
expression throughout the procedure. Visual Basic automatically monitors
the watch expressions, which appears in the Watch pane of the Debug
window where the values can be observed. To add a watch expression,
the following steps are needed

• Add Watch command is chosen from the Debug menu.

• The Expression is entered in the Expression box.

• If necessary,the scope of the variables is set and an option button
is selected.

• The OK button is clicked.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0810.%20Error%20Trapping%20Options%20in%20VB.htm (5 of 10) [6/26/02 3:23:41 PM]

0810. Error Trapping Options in VB

To edit a Watch expression,

• Edit Watch command is chosen from the Debug menu. A
dialogue box is displayed.

• The necessary changes are made and the OK button is clicked.

To delete a watch expression, the desired watch expression is selected in
the watch pane and the Delete key is pressed.

Immediate Window

The immediate pane appears by default the first time the Debug window is
opened. From break mode, the code is executed immediately by entering
it in this pane.This window is the right place for the users to modify data or
to test functions during development. We can enter any valid expression
in this window and VB will execute it. If a refrence is made to an object
outside the scope of the current code execution.Visual Basic will generate
an error.

Testing Data and Procedures in Immediate Pane

While debugging an application, sometimes it may be necessary to
execute individual procedures, evaluate expressions or assign new values
to the variables or properites.The Immediate Pane can be used to
accomplish such tasks. Expressions can be evaluated by printing in the
immediate Pane. Information can be printed in the Immediate Pane by
using Print methods directly. These printing techniques offer several
advantages over watch expressions.

The data or messages can be viewed at run time.

Feedback is displayed in a separate area, so that it does not interface with

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0810.%20Error%20Trapping%20Options%20in%20VB.htm (6 of 10) [6/26/02 3:23:41 PM]

0810. Error Trapping Options in VB

the output that the user is seeing.

Since the coding is saved as part of the form, these statements need to
be redefined the next time we work on the application.

Example

Private Sub Form_Load()

Dim a As Integer

Dim b, c As Integer

a = 10

b = 6

c = a - b

MsgBox "Value of c is " & c

Debug.Print " Value of c is : " & c

End Sub

Note

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0810.%20Error%20Trapping%20Options%20in%20VB.htm (7 of 10) [6/26/02 3:23:41 PM]

0810. Error Trapping Options in VB

In break mode, a statement in the Immediate pane is
executed in the context or scope displayed in the Procedure
box.For example, if we type Print variablename, the output is
the value of a local variable.This is similar to the Print
method causing a procedure in execution to be halted.

Working in Break Mode

Break mode halts the operation of an application and gives a snapshot of
its condition at any time.when an application is in break mode,we can

• Modify code in the application

• Observe the condition of application's interface

• Determine which active procedures have been called.Watch the
value of the variables properties and statements.

• Change the values of variables and properties.

• Run Visual Basic statements immediately

• Manually control the operation of an application.

In addition to all these,there is also a Locals window that shows the value
of every variable,and each member of all objects that are currently in
scope.The Locals window can be viewed by selecting Locals from the
View menu.

Using a Breakpoint to selectively Halt Execution

At runtime, a breakpoint tells Visual Basic to halt before executing a

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0810.%20Error%20Trapping%20Options%20in%20VB.htm (8 of 10) [6/26/02 3:23:41 PM]

0810. Error Trapping Options in VB

specific line of code.A breakpoint can be set or removed at design time or
at break mode.To set or remove a breakpoint,

• The insertion point is moved to the line of code where the
breakpoint is to be set or removed.

• The Toggle Breakpoint is chosen from the Debug menu or the
Toggle Breakpoint button is chosen in the ToolBar.

Once a breakpoint is set,Visual Basic highlights the selected line in
bold.On reaching the breakpoint, the application is halted and its current
state examined.Checking the results of an application is easy,because it
is possible to move the focus among the forms and modules of the
application,code window and debug window.

Using Stop Statements to Enter Break Mode

Placing a stop statement in a procedure is an alternative way of setting a
breakpoint.Whenever Visual Basic encounters a Stop statement, it halts
execution and switches to breakmode.Although Stop statements act like
breakpoints,they are not set and cleared in the same way.If the current
porject is reloaded, the breakpoints are cleared,but Stop statemenst
remain until they are manually removed.Stop statements also remain in
the application when an executable file is created and they act just as End
statements.

Debug Object

The Immediate window can also be used programmatically to output
messages or state variables as the programs runs, by refrerring to it as
the Debug object.This object is a good tool for getting information while
we are debugging.The object has two methods Print and Assert

Print

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0810.%20Error%20Trapping%20Options%20in%20VB.htm (9 of 10) [6/26/02 3:23:41 PM]

0810. Error Trapping Options in VB

The print method prints the result of any legal expression to Immediate
window.This method can be used to display data in the Immediate window
while the application runs.The print method is also used for tracing.
Tracing provides a method for physically monitoring the entrance and exit
of a procedure.The Print method of the Debug object is one of the most
useful of all the built-in debugging aids ofered by Visual Basic.

Assert

The Assert method takes an expression that returns a Boolean True or
False value and stops execution if the expression is False.The Assert
method works only in the development enviroment,but it is very useful.It
passes execution only if the expression we pass evaluates to False(0).For
example, if variable x has to be trapped when it is less than 0, the
following logic is requried.

Example

Private sub Form_Load()

Dim x As integer

x = - 1

Debug.Assert Not (x< 0)

End sub

In the above coding, to create False(0) value for Assert, use the Not
operator to invert the truth of the expression to trap a value of X less than
0.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutoria...810.%20Error%20Trapping%20Options%20in%20VB.htm (10 of 10) [6/26/02 3:23:41 PM]

0901. Image List

 Image List

Introduction

The ImageList control is most often used as a container for images
and icons that are employed by other controls, such as TreeView,
ListView, TabStrip, and ImageCombo controls. For this reason, it
makes sense to describe it before any other controls. The ImageList
control is invisible at run time, and to display one of the images it
contains you must draw it on a form, a PictureBox control, or an
Image control, or associate it with another control.

Using the ImageList control as a repository for images that are then
used by other controls offers a number of advantages. Without this
control, in fact, you would have to load images from disk at run time
using a LoadPicture function, which slows down execution and
increases the number of files to be distributed with your program, or
an array of Image controls, which slows down form loading. It's
much easier and more efficient to load all the images in the
ImageList control at design time and then refer to them from the
other controls or in source code.

Adding Images

The ImageList control exposes a ListImages collection, which in turn
contains a number of ListImage objects. Each ListImage item holds
an individual image. As with any collection, an individual ListImage
object can be referenced through its numerical index or its string

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0901.%20Image%20List.htm (1 of 6) [6/26/02 3:38:36 PM]

0901. Image List

key (if it has one). Each ListImage object can hold an image in one of
the following graphic formats: bitmap (.bmp), icon (.ico), cursor
(.cur), JPEG (.jpg), or GIF (.gif). The latter two formats weren't
supported by the ImageList control distributed with Visual Basic 5.

Adding images at design time

Adding images at design-time is easy. After you place an ImageList
control on a form, right-click on it, select the Properties command
from the pop-up menu, and switch to the Images tab, as shown in
Figure 10-3. All you have to do now is click on the Insert Picture
button and pick up your images from disk. You should associate a
string key with each image so that you can refer to it correctly later,
even if you add or remove other images in the future (which would
affect its numerical index). Of course, all string keys must be unique
in the collection. You can also specify a string for the Tag property
of an image, for example, if you want to provide a textual description
of the image or any other information associated with this image.
Visual Basic never directly uses this property, so you're free to store
any string data in it.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0901.%20Image%20List.htm (2 of 6) [6/26/02 3:38:36 PM]

0901. Image List

. The Images tab of the Properties window of an ImageList control.

Images added to the ListImages collection can be of any size, with a
caveat: If you're going to use these images inside another common
control, all the images after the first one will be resized and
stretched to reflect the size of the first image added to the control.
This isn't an issue if you're going to display these images on a form,
a PictureBox control, or an Image control.

If the ImageList control doesn't contain any images, you can set the
size you want the images to be in the General tab of the Properties
dialog box. Trying to do this when the control already contains one
or more ListImage items raises an error.

Adding images at run time

Adding images at run time requires you to use the Add method of
the ListImages collection, the syntax of which is the following:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0901.%20Image%20List.htm (3 of 6) [6/26/02 3:38:36 PM]

0901. Image List

Add([Index], [Key], [Picture]) As ListImage

If you omit the Index argument, you add the new image at the end of
the collection. The following code creates a new ListImage item and
associates it with a bitmap loaded from disk

Dim li As ListImage

Set li = ImageList1.ListImages.Add(, "Cut", _

LoadPicture("d:\bitmaps\cut.bmp"))

 You don't need to assign the result value of the Add method to a
ListImage object unless you want to assign a string to the Tag
property of the object just created. Even in that case, you can do
without an explicit variable:

With ImageList1.ListImages.Add(, "Cut",
LoadPicture("d:\bitmaps\cut.bmp"))

 .Tag = "The Cut icon"

End With

Removing the Images at Run time and Design Time

You can use a numerical index or a string key

To remove the associated image.

ImageList1.ListImages.Remove "Cut"

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0901.%20Image%20List.htm (4 of 6) [6/26/02 3:38:36 PM]

0901. Image List

You can also remove all the images in one operation by using the
collection's Clear method:

 Remove all images.

ImageList1.ListImages.Clear

Extracting individual images

Each ListImage object exposes a Picture property, which lets you
extract the image and assign it to another control, typically a
PictureBox or Image control:

Set Picture1.Picture = ImageList1.ListImages("Cut").Picture

ListImage objects also expose an ExtractIcon method, which creates
an icon out of the image and returns it to the caller. You can
therefore use this method whenever an icon is expected, as in this
code:

Form1.MouseIcon = ImageList1.ListImages("Pointer").ExtractIcon

Creating transparent images

The ImageList control has a MaskColor property whose value
determines the color that should be considered transparent when
you're performing graphical operations on individual ListImage
objects or when you're displaying images inside other controls. By
default, this is the gray color (&HC0C0C0), but you can change it
both at design time in the Color tab of the Properties dialog box and
at run time via code.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0901.%20Image%20List.htm (5 of 6) [6/26/02 3:38:36 PM]

0901. Image List

When a graphical operation is performed, none of the pixels in the
image that are the color defined by MaskColor are transferred. To
actually display transparent images, however, you must ensure that
the UseMaskColor property is set to True, which is its default value.
You can modify this value in the General tab of the Properties dialog
box or at run time via code:

Make white the transparent color.

ImageList1.MaskColor = vbWhite

ImageList1.UseMaskColor = True

Creating composite images

The ImageList control also includes the ability to create composite
images by overlaying two individual images held in ListImage
objects. This can be accomplished using the Overlay method. Figure
10-4 shows two individual images and then what you can get by
overlaying the second one on the first one:

PaintPicture ImageList1.ListImages(1).Picture, 0, 10, 64, 64

PaintPicture ImageList1.ListImages(2).Picture, 100, 10, 64, 64

PaintPicture ImageList1.Overlay(1, 2), 200, 10, 64, 64

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0901.%20Image%20List.htm (6 of 6) [6/26/02 3:38:36 PM]

0902. Tree View

 Tree View

Introduction

The Visual Basic 6 version of the TreeView control has a number of
improvements and now supports check boxes beside each item and
full row selection. Moreover, individual nodes can have different
Bold, Foreground, and Background attributes.

The TreeView control exposes a Nodes collection, which in turn
includes all the Node objects that have been added to the control.
Each individual Node object exposes a number of properties that let
you define the look of the control. Typically, a TreeView control has
one single root Node object, but you can also create multiple Node
objects at the root level.

Setting Design-Time Properties

Immediately after creating a TreeView control on a form, you should
display its Properties dialog box (shown in Figure 10-5), which you
do by right-clicking on the control and selecting the Properties menu
item. Of course, you can also set properties that appear in this page
at run time, but you rarely need to change the appearance of a
TreeView control once it has been displayed to the user.

The Style property affects which graphical elements will be used
inside the control. A TreeView control can display four graphical
elements: the text associated with each Node object, the picture
associated with each Node object, a plus or minus sign beside each

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0902.%20Tree%20View.htm (1 of 6) [6/26/02 3:38:38 PM]

0902. Tree View

Node object (to indicate whether the Node is in collapsed or
expanded state), and the lines that go from each Node object to its
child objects. The Style property can be assigned one of eight
values, each one representing a different combination of these four
graphical elements. In most cases, you use the default value, 7-
tvwTreelinesPlusMinusPictureText, which displays all graphical
elements.

 The General tab of the Properties dialog box of a TreeView control.

The LineStyle property affects how lines are drawn. The value 0-
tvwTreeLines doesn't display lines among root Node objects (this is
the default setting), whereas the value 1-tvwRootLines also displays
lines among all root Nodes and makes them appear as if they were
children of a fictitious Node located at an upper level. The
Indentation property states the distance in twips between vertical

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0902.%20Tree%20View.htm (2 of 6) [6/26/02 3:38:38 PM]

0902. Tree View

dotted lines.

The LabelEdit property affects how the end user can modify the text
associated with each Node object. If it's assigned the value 0-
tvwAutomatic (the default), the end user can edit the text by clicking
on the Node at run time; if it's assigned the value 1-tvwManual, the
edit operation can be started only programmatically, by your issuing
a StartLabelEdit method.

The ImageList combo box lets you select which ImageList control
will be used to retrieve the images of individual Node objects. The
combo box lists all the ImageList controls located on the current
form.

If you set the Checkboxes property to True, a check box appears beside each
Node object so that the end user can select multiple Node objects.

Adding Node objects

One of the shortcomings of the TreeView control is that you can't
add items at design time as you can with ListBox and ComboBox
controls. You can add Node objects only at run time using the Add
method of the Nodes collection.The Add method's syntax is the
following:

Add([Relative],[Relationship],[Key],[Text],[Image],[SelectedImage]) As Node

Relative and Relationship indicate where the new Node should be
inserted. Key is its string key in the Nodes collection, Text is the
label that will appear in the control, and Image is the index or the
string key in the companion ImageList control of the image that will
appear beside the Node. SelectedImage is the index or key of the
image that will be used when the Node is selected. For example, if
you're creating a TreeView control that mimics Windows Explorer

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0902.%20Tree%20View.htm (3 of 6) [6/26/02 3:38:38 PM]

0902. Tree View

and its directory objects, you might write something like this:

Dim nd As Node

Set nd = Add(, , ,"C:\System", "Folder", "OpenFolder

You can control the appearance of individual Node objects by
setting their ForeColor, BackColor, and Bold properties, the effects
of which are shown in Figure 10-6. This new feature permits you to
visually convey more information about each Node. Typically, you
set these properties when you add an item to the Nodes collection:

With TV.Nodes.Add(, , , "New Node")

 .Bold = True

 .ForeColor = vbRed

 .BackColor = vbYellow

End With

Showing information about a Node

Users expect the program to do something when they click on a
Node object in the TreeView control—for example, to display some
information related to that object. To learn when a Node is clicked,
you have to trap the NodeClick event. You can determine which
Node has been clicked by looking at the Index or Key property of the
Node parameter passed to the event procedure. In a typical situation,
you store information about a Node in an array of String or UDT
items:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0902.%20Tree%20View.htm (4 of 6) [6/26/02 3:38:38 PM]

0902. Tree View

Private Sub TreeView1_NodeClick(ByVal Node As MSComctlLib.Node)

 ' info() is an array of strings that hold nodes' descriptions.

 lblData.Caption = info(Node.Index)

End Sub

The NodeClick event differs from the regular Click event in that the
latter fires whenever the user clicks on the TreeView control,
whereas the former is activated only when the user clicks on a Node
object.

Editing Node text

By default, the user can click on a Node object to enter Edit mode
and indirectly change the Node object's Text property. If you don't
like this behavior, you can set the LabelEdit property to 1-
tvwManual. In this case, you can enter Edit mode only by
programmatically executing a StartLabelEdit method.

Regardless of the value of the LabelEdit property, you can trap the
instant when the user begins editing the current value of the Text
property by writing code in the BeforeLabelEdit event procedure.
When this event fires, you can discover which Node is currently
selected by using the TreeView's SelectedItem property, and you can
cancel the operation by setting the event's Cancel parameter to True:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0902.%20Tree%20View.htm (5 of 6) [6/26/02 3:38:38 PM]

0902. Tree View

Private Sub TreeView1_BeforeLabelEdit(Cancel As Integer)

 ' Prevent the root Node's Text property from editing.

 If TreeView1.SelectedItem.Key = "Root" Then Cancel = True

End Sub

Similarly, you can find out when the user has completed the editing
and reject, if you want to, the new value of the Text property by
trapping the AfterLabelEdit event. Typically, you use this event to
check whether the new value follows any syntactical rule enforced
by the particular object. For example, you can reject empty strings
by writing the following code:

Private Sub TreeView1_AfterLabelEdit(Cancel As Integer, _

 NewString As String)

 If Len(NewString) = 0 Then Cancel = True

End Sub

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0902.%20Tree%20View.htm (6 of 6) [6/26/02 3:38:38 PM]

0903. List View

 List View

Introduction

Together with the TreeView control, the ListView control has been
made popular by Windows Explorer. Now many Windows
applications use this pair of controls side by side, and they're
therefore called Windows Explorer-like applications. In these
applications, the end user selects a Node in the TreeView control on
the left and sees some information related to it in the rightmost
ListView control.

The ListView control supports four basic view modes: Icon,
SmallIcon, List, and Report. To see how each mode is rendered, try
the corresponding items in the Windows Explorer View menu. (The
Report mode corresponds to the Details menu command.) To give
you an idea of the flexibility of this control, you should know that the
Windows desktop is nothing but a large ListView control in Icon
mode with a transparent background. When used in Report mode,
the ListView control resembles a grid control and lets you display
well-organized information about each item.

Setting Design-Time Properties

While you can use the regular Properties window to set most
properties of a ListView control, it's surely preferable to use a
ListView control's custom Properties dialog box.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0903.%20List%20View.htm (1 of 7) [6/26/02 3:38:40 PM]

0903. List View

 The General tab of the Properties dialog box of a ListView control.

General properties

I've already referred to the View property, which can be one of the
following values: 0-lvwIcon, 1-lvwSmallIcon, 2-lvwList, or 3-
lvwReport. You can change this property at run time as well as let
the user change it (typically by offering four options in the View
menu of your application). The Arrange property lets you decide
whether icons are automatically aligned to the left of the control (1-
lvwAutoLeft) or to the top of the control (2-lvwAutoTop), or whether
they shouldn't be aligned at all (0-lvwNone, the default behavior).
This property takes effect only when the control is in Icon or
SmallIcon display mode.

The LabelEdit property determines whether the user can edit the text

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0903.%20List%20View.htm (2 of 7) [6/26/02 3:38:40 PM]

0903. List View

associated with an item in the control. If this property is set to 0-
lvwAutomatic, the edit operation can be initiated only by code using
a StartLabelEdit method. The LabelWrap Boolean property specifies
whether longer labels wrap on multiple lines of text when in Icon
mode. The HideColumnHeaders Boolean property determines
whether column headers are visible when in Report mode. (The
default value is False, which makes the columns visible.) If you
assign the MultiSelect property the True value, the ListView control
behaves much like a ListBox control whose MultiSelect property has
been set to 2-Extended

Column Header

The ColumnHeaders property is new to Visual Basic 6 because
previous versions of the ListView control didn't support icons in
column headers:

' You can use the same ImageList control for different properties.

Set ListView1.Icons = ImageList1

Set ListView1.SmallIcons = ImageList2

Set ListView1.ColumnHeaderIcons = ImageList2

You can automatically sort the items in the ListView control by
setting a few properties in the Sorting tab of the Properties dialog
box. Set the Sorted property to True if you want to sort items.
SortKey is the index of the column that will be used for sorting (0 for
the first column), and SortOrder is the sorting order (0-lvwAscending
or 1-lvwDescending). You can also set these properties at run time.

You can create one or more ColumnHeader objects at design time by
using the Column Header tab of the Properties dialog box. You just

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0903.%20List%20View.htm (3 of 7) [6/26/02 3:38:40 PM]

0903. List View

have to click on the Insert Column button and then type the values of
the Text property (which will be displayed in the header), the
Alignment property (Left, Right, or Center, although the first column
header can only be left-aligned), and the Width in twips. You can
also specify a value for the Key and Tag properties and set the index
of the icon to be used for this header. (It's an index referred to by the
ColumnHeaderIcons property in the ImageList control, or it's 0 if this
column header doesn't have any icons

Adding ListItem objects

You add new items to the ListView controls with the ListItems
collection's Add method, which has the following

Add([Index], [Key], [Text], [Icon], [SmallIcon]) As ListItem

Index is the position at which you place the new item. (If you omit
Index, the item is added to the end of the collection.) Key is the
inserted item's optional key in the ListItems collection, Text is the
string displayed in the control, Icon is an index or a key in the
ImageList control pointed to by the Icons property, and SmallIcon is
an index or a key in the ImageList control pointed to by the
SmallIcons property. All these arguments are optional.

The Add method returns a reference to the ListItem object being
created, which you can use to set those properties whose values
can't be passed to the Add method itself, as in the following
example:

Adding ListItem objects

You add new items to the ListView controls with the ListItems
collection's Add method, which has the following syntax:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0903.%20List%20View.htm (4 of 7) [6/26/02 3:38:40 PM]

0903. List View

Add([Index], [Key], [Text], [Icon], [SmallIcon]) As ListItem

Index is the position at which you place the new item. (If you omit
Index, the item is added to the end of the collection.) Key is the
inserted item's optional key in the ListItems collection, Text is the
string displayed in the control, Icon is an index or a key in the
ImageList control pointed to by the Icons property, and SmallIcon is
an index or a key in the ImageList control pointed to by the
SmallIcons property. All these arguments are optional.

The Add method returns a reference to the ListItem object being
created, which you can use to set those properties whose values
can't be passed to the Add method itself, as in the following
example:

Create a new item with a "ghosted" appearance.

Dim li As ListItem

Set li = ListView1.ListItems.Add(, , "First item", 1)

li.Ghosted = True

 Adding ColumnHeaders objects

Often you don't know at design time what columns should be
displayed in a ListView control. For example, you might be showing
the result of a user-defined query, in which case you don't know the
number and the names of the fields involved. In such circumstances,
you must create ColumnHeader objects at run time with the Add
method of the ColumnHeaders collection, which has this syntax:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0903.%20List%20View.htm (5 of 7) [6/26/02 3:38:40 PM]

0903. List View

Add([Index], [Key], [Text], [Width], [Alignment], [Icon]) _

 As ColumnHeader

 Index is the position in the collection, Key is an optional key, Text is
the string displayed in the header, and Width is the column's width
in twips. Alignment is one of the following constants: 0-
lvwColumnLeft, 1-lvwColumnRight, or 2-lvwColumnCenter. Icon is
an index or a key in the ListImage control referenced by the
ColumnHeaderIcons property. With the exception of the Tag
property, these are the only properties that can be assigned when a
ColumnHeader object is created, so you can usually discard the
return value of the Add method:

 Clear any existing column header.

ListView1.ColumnHeaders.Clear

'The alignment for the first column header must be lvwColumnLeft.

ListView1.ColumnHeaders.Add , , "Last Name", 2000, lvwColumnLeft

ListView1.ColumnHeaders.Add , , "First Name", 2000, lvwColumnLeft

ListView1.ColumnHeaders.Add , , "Salary", 1500, lvwColumnRight

 Adding ListSubItems

Each ListItem object supports a ListSubItems collection, which lets
you create values displayed in the same row as the main ListItem
object when the control is in Report mode. This collection replaces
the SubItems array that was present in previous versions of the
control. (The array is still supported for backward compatibility.) You

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0903.%20List%20View.htm (6 of 7) [6/26/02 3:38:40 PM]

0903. List View

can create new ListSubItem objects using the Add method of the
ListSubItems collection:

Add([Index], [Key], [Text], [ReportIcon], [ToolTipText]) _

 As ListSubItem

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0903.%20List%20View.htm (7 of 7) [6/26/02 3:38:40 PM]

0904. Flex Grid

 Flex Grid

Introduction

A MSFlexgrid control in Visual Basic is used to create applications
that present information in rows and columns. It diaplays
information in cells. A cell is a location in the MSFlexGrid at which a
row and a column intersect.The user can select a cell at run time by
clicking it or by using the arrow keys, but cannot edit or alter the
cell's contents.

Use of FlexGrid Control

The MSFlexGrid control displays and operates on tabular data.It
allows complete flexibility to sort,merge, and format tables
containing strings and pictures.When bound to a Data
control,MSFlexGrid displays read_only data.

We can place text or a picture, or both in any cell of a
MSFlexGrid.The Row and Col properties specify the current cell in a
MSFlexGrid.We can specify the curent cell in code, or the user can
change it at run time using the mouse or the arrow keys.The Text
property refrences the contents of the current cell.

If a cell's text is too long to be displayed in the cell, and the
WordWrap property is set to True,the text wraps to the next line
within the same cell.To display the wrapped text,we need to increase
the cell's column width(Col Width property) or row heigth (Row

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0904.%20Flex%20Grid.htm (1 of 10) [6/26/02 3:38:43 PM]

0904. Flex Grid

Heightproperty)

The Cols and Rows properties are used to determine the number of
columns and row in a MSFlexGrid control.

Different Types of Rows and Columns in FlexGrid

Two kinds of rows or columns are created in the MSFlexGrid
control.They are fixed and nonfixed.A nonfixed row or column
scrolls when the scroll bars are active in the MSFlexGrid control.A
fixed row or column does not scroll at any time.FixedRows or
FixedCols is generally used for displaying headings.Rows and
columns are created by setting the four properties of MSFlexgrid
control such as ROws,Cols,FixedRows and FixedCols. Lets us
design a small program that uses the MSFlexGrid.

Since the MSFlexGrid control is an OCX control, we must make sure
if the control is included in the projects.If the control does not
appear in the ToolBox, it is added by selecting Components from
Project menu and placing a check mark in the Microsoft MSFlexGrid
Control.This places the control in the ToolBox.

Example

Screen :

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0904.%20Flex%20Grid.htm (2 of 10) [6/26/02 3:38:43 PM]

0904. Flex Grid

Table :

Sr no Object Name Type Properties

1 cboItem Combo box .style=2-
Dropdown List

 2 cboMonth Combo box .style=2-
Dropdown List

 3 txtSale Text Box .FontSize=10

 4 Lable1 Lable .Caption=Item

.Autosize=True

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0904.%20Flex%20Grid.htm (3 of 10) [6/26/02 3:38:43 PM]

0904. Flex Grid

 5 Lable2 Lable .Caption=Month

.AutoSize=True

 6 Lable3

Lable Caption=No of
Values

.AutoSize=True

7 flxData MSFlexGrid Default Setting

Coding :

Option Explicit

Dim Mon(12) As String

Dim Item(6) As String

Dim i As Integer

Private Sub Command1_Click()

flxData.Row = cboItem.ListIndex + 1

flxData.Col = cboMonth.ListIndex + 1

flxData.Text = Str(Val(flxData.Text) + Val(txtSale.Text))

End Sub

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0904.%20Flex%20Grid.htm (4 of 10) [6/26/02 3:38:43 PM]

0904. Flex Grid

Private Sub Form_Load()

'---generate columns and rows

 flxData.Cols = 13

 flxData.Rows = 7

'---assign col/row values

flxData.Col = 0 'on column 0

flxData.Row = 1

flxData.Text = "Statineries"

flxData.Row = 2

flxData.Text = "Groceries"

flxData.Row = 3

flxData.Text = "Milk Products"

flxData.Row = 4

flxData.Text = "Confectionaries"

flxData.Row = 5

flxData.Text = "House hold item"

flxData.Row = 6

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0904.%20Flex%20Grid.htm (5 of 10) [6/26/02 3:38:43 PM]

0904. Flex Grid

flxData.Text = "Toys"

flxData.Row = 0

flxData.Col = 1

flxData.Text = "Jan"

flxData.Col = 2

flxData.Text = "Feb"

flxData.Col = 3

flxData.Text = "Mar"

flxData.Col = 4

flxData.Text = "Apr"

flxData.Col = 5

flxData.Text = "May"

flxData.Col = 6

flxData.Text = "Jun"

flxData.Col = 7

flxData.Text = "Jul"

flxData.Col = 8

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0904.%20Flex%20Grid.htm (6 of 10) [6/26/02 3:38:43 PM]

0904. Flex Grid

flxData.Text = "Aug"

flxData.Col = 9

flxData.Text = "Sep"

flxData.Col = 10

flxData.Text = "Oct"

flxData.Col = 11

flxData.Text = "Nov"

flxData.Col = 12

flxData.Text = "Dec"

'---- For Month

Mon(0) = "Jan"

Mon(1) = "Feb"

Mon(2) = "Mar"

Mon(3) = "Apr"

Mon(4) = "May"

Mon(5) = "Jun"

Mon(6) = "Jul"

Mon(7) = "Aug"

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0904.%20Flex%20Grid.htm (7 of 10) [6/26/02 3:38:43 PM]

0904. Flex Grid

Mon(8) = "Sep"

Mon(9) = "Oct"

Mon(10) = "Nov"

Mon(11) = "Dec"

For i = 0 To 11

 cboMonth.AddItem Mon(i)

Next

cboMonth.ListIndex = 0

Item(0) = "Stationary"

Item(1) = "Groceries"

Item(2) = "Milk Products"

Item(3) = "Confectionaries"

Item(4) = "House hold item"

Item(5) = "Toys"

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0904.%20Flex%20Grid.htm (8 of 10) [6/26/02 3:38:43 PM]

0904. Flex Grid

For i = 0 To 5

 cboItem.AddItem Item(i)

Next

cboItem.ListIndex = 0

End Sub

Changing the Cell Eidth and Cell Height

The heigth and width of the cells in the FlexGrid can be widened in
order to get a clear picture at run time. A procedure is added to the
Form by selecting the Add Procedure command from the project
menu in the Code Window.The new procedure is named as
SetColWidth.

Scroll Bars of the FlexGris Control

Visual Basic automatically adds horizontal and veritcal scrol bars in
the FlexGrid control when the cells do not fit into it. This is because,
the default values of the Scrollbars property of the Flexgrid control
is set to 3-Both.If we do not want the ScrollBars to appear, the
ScrollBars property is set to 0-None at design time or the following

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0904.%20Flex%20Grid.htm (9 of 10) [6/26/02 3:38:43 PM]

0904. Flex Grid

code is added in the Form_load() procedure.

FlexGrid1.ScrollBars =0

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0904.%20Flex%20Grid.htm (10 of 10) [6/26/02 3:38:43 PM]

0905. Rich Text Box

 Rich Text Box

Introduction

The RichTextBox control is one of the most powerful controls
provided with Visual Basic. In a nutshell, it's a text box that's able to
display text stored in Rich Text Format (RTF), a standard format
recognized by virtually all word processors, including Microsoft
WordPad (not surprisingly, since WordPad internally uses the
RichTextBox control). This control supports multiple fonts and
colors, left and right margins, bulleted lists, and more.

You might need time to get used to the many features of the
RichTextBox control. The good news is that the RichTextBox control
is code-compatible with a regular multiline TextBox control, so you
can often recycle code that you have written for a TextBox control.
But unlike the standard TextBox control, the RichTextBox control
has no practical limit to the number of lines of text it can contain.

The RichTextBox control is embedded in the RichTx 32.ocx file,
which you must distribute with all the applications that use this
control.

Setting Design-Time Properties

You can set a few useful design-time properties in the General tab of
the Property Pages dialog box as you can see in Figure 12-8. For
example, you can type the name of a TXT or RTF file that must be
loaded when the form is loaded and that corresponds to the Filename

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0905.%20Rich%20Text%20Box.htm (1 of 8) [6/26/02 3:38:45 PM]

0905. Rich Text Box

property.

The RightMargin property represents the distance in twips of the
right margin from the left border of the control. The BulletIndent is
the number of twips a paragraph is indented when the SetBullet
property is True. The AutoVerbMenu is an interesting property that
lets you prevent the standard Edit pop-up menu from appearing
when the user right-clicks on the control. If you want to display your
own pop-up menu, leave this property as False. All the other
properties in this General page are also supported by standard
TextBox controls, so I won't describe them here.

In the Appearance tab of the Properties dialog box, you find other
properties, such as BorderStyle and ScrollBars, whose meaning
should already be known to you. An exception is the DisableNoScroll
property: When the ScrollBars property is assigned a value other
than 0-rtfNone and you set the DisableNoScroll property to True, the
RichTextBox control will always display the scroll bars, even if the
current document is so short that it doesn't require scrolling. This is
consistent with the behavior of most word processors.

The RichTextBox control is data-aware and therefore exposes the
usual Dataxxxx properties that let you bind the control to a data
source. In other words, you can write entire TXT or RTF documents
in a single field of a database.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0905.%20Rich%20Text%20Box.htm (2 of 8) [6/26/02 3:38:45 PM]

0905. Rich Text Box

The General tab of the Properties dialog box of a RichTextBox control.

Run-Time Operations

The RichTextBox control exposes so many properties and methods
that it makes sense to subdivide them in groups, according to the
action you want to perform.

Loading and saving files

You can load a text file into the control using the LoadFile method,
which expects the filename and an optional argument that specifies
whether the file is in RTF format (0-rtfRTF, the default) or plain text (1-
rtfText):

Load an RTF file into the control.

RichTextBox1.LoadFile "c:\Docs\TryMe.Rtf", rtfRTF

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0905.%20Rich%20Text%20Box.htm (3 of 8) [6/26/02 3:38:45 PM]

0905. Rich Text Box

The name of the file loaded by this method becomes available in the
FileName property. You can also indirectly load a file into the control
by assigning its name to the FileName property, but in this case you
have no way of specifying the format.

You can save the current contents of the control using the SaveFile
method, which has a similar syntax:

Save the text back into the RTF file.

RichTextBox1.SaveFile RichTextBox1.FileName, rtfRTF

 The LoadFile and SaveFile methods are a good solution when you
want to load or save the entire contents of a file. At times, however,
you might want to append the contents of the control to an existing
file or store multiple portions of text in the same file. In such cases,
you can use the TextRTF property with regular Visual Basic file
commands and functions:

Changing character attributes

The RichTextBox control exposes many properties that affect the
attributes of the characters in the selected text: These are
SelFontName, SelFontSize, SelColor, SelBold, SelItalic, SelUnderline,
and SelStrikeThru. Their names are self-explanatory, so I won't
describe what each one does. You might find it interesting to note
that all of the properties work as they would within a regular word
processor. If text is currently selected, the properties set or return
the corresponding attributes; if no text is currently selected, they set
or return the attributes that are active from the insertion point
onward.

The control also exposes a Font property and all the various

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0905.%20Rich%20Text%20Box.htm (4 of 8) [6/26/02 3:38:45 PM]

0905. Rich Text Box

Fontxxxx properties, but these properties affect the attributes only
when the control is loaded. If you want to change the attribute of the
entire document, you must select the whole document first:

Change font name and size of entire contents.

RichTextBox1.SelStart = 0

RichTextBox1.SelLength = Len(RichTextBox1.Text)

RichTextBox1.SelFontName = "Times New Roman"

RichTextBox1.SelFontSize = 12

' Cancel the selection.

RichTextBox1.SelLength = 0

 Changing paragraph attributes

You can control the formatting of all the paragraphs that are included
in the current selection. The SelIndent and SelHangingIndent
properties work together to define the left indentation of the first line
and all the following lines of a paragraph. The way these properties
work differs from how word processors usually define these sorts of
entities: The SelIndent property is the distance (in twips) of the first
line of the paragraph from the left border, whereas the
SelHangingIndent property is the indentation of all the following lines
relative to the indentation of the first line. For example, this is the
code that you must execute to have a paragraph that is indented by
400 twips and whose first line is indented by an additional 200 twips:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0905.%20Rich%20Text%20Box.htm (5 of 8) [6/26/02 3:38:45 PM]

0905. Rich Text Box

RichTextBox1.SelIndent = 600 ' Left indentation + 1st line indentation

RichTextBox1.SelHangingIndent = -200 ' A negative value

The SelRightIndent property is the distance of the paragraph from
the right margin of the document (whose position depends on the
RightMargin property). The following code moves the right margin
about 300 twips from the right border of the control, and then sets a
right indentation of 100 twips for the paragraphs that are currently
selected:

' RightMargin is measured from the left border.

RichTextBox1.RightMargin = RichTextBox1.Width _ 300

RichTextBox1.SelRightIndent = 100

You can control the alignment of a paragraph by means of the
SelAlignment enumerated property, which can be assigned the
values 0-rtfLeft, 1-rtfRight, or 2-rtfCenter. (The RichTextBox control
doesn't support justified paragraphs.) You can read this property to
retrieve the alignment state of all the paragraphs in the selection: In
this case, the property returns Null if the paragraphs have different
alignments.

The SelCharOffset property lets you create superscript and subscript
text—in other words, position characters slightly above or below the
text baseline. A positive value for this property creates a superscript,
a negative value creates a subscript, and a zero value restores the
regular text position. You shouldn't assign this property large
positive or negative values, though, because they would make the
superscript or subscript text unreadable (or even invisible)—the
RichTextBox control doesn't automatically adjust the distance

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0905.%20Rich%20Text%20Box.htm (6 of 8) [6/26/02 3:38:45 PM]

0905. Rich Text Box

between lines if they contain superscript or subscript text:

'Make the selection superscript text.

RichTextBox1.SelCharOffset = 40

' Don't forget to reduce the characters' size.

RichTextBox1.SelFontSize = RichTextBox1.SelFontSize \ 2

 Managing the Tab key

Like a real word processor, the RichTextBox control is capable of
managing tab positions on a paragraph-by-paragraph basis. This is
achieved using the two properties SelTabCount and SelTabs: The
former sets the number of tab positions in the paragraphs included
in the selection, and the latter sets each tab position to a given value.
Here's a simple example that shows how you can use these
properties:

Add three tabs, at 300, 600, and 1200 twips from left margin.

RichTextBox1.SelTabCount = 3

' The SelTabs property is zero-based.

' Tabs must be specified in increasing order, otherwise they are ignored.

RichTextBox1.SelTabs(0) = 300

RichTextBox1.SelTabs(1) = 600

RichTextBox1.SelTabs(2) = 1200

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0905.%20Rich%20Text%20Box.htm (7 of 8) [6/26/02 3:38:45 PM]

0905. Rich Text Box

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0905.%20Rich%20Text%20Box.htm (8 of 8) [6/26/02 3:38:45 PM]

0906. Status Bar

 Status Bar

Introduction

Many applications employ the bottom portion of their windows for
displaying information to the end user. The most convenient way to
create this interface in Visual Basic is with a StatusBar control.

The StatusBar control exposes a Panels collection, which in turn
contains Panel objects. A Panel object is an area of the status bar
that can hold a piece of information in a given style. The StatusBar
control offers several automatic styles (such as date, time, and state
of shift keys), plus a generic Text style that lets you show any string
in a Panel object. You can also have a StatusBar control work in
SimpleText mode, whereby individual Panel objects are replaced by a
wider area in which you can display long text messages.

Setting Design-Time Properties

The General tab of the Properties dialog box doesn't contain many
interesting properties. In theory, you can set the Style property to 0-
sbrNormal (the default) or 1-sbrSimpleText, and you can specify the
SimpleText property itself, which will therefore appear as is in the
StatusBar. In practice, however, you never change the default
settings because you rarely need to create a StatusBar control
merely to show a text message. In that case, in fact, you'd be better
off with a simpler Label control or a PictureBox control with Align =
vbAlignBottom. The only other custom property that appears on this
tab is ShowTips, which enables the ToolTipText property of

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0906.%20Status%20Bar.htm (1 of 5) [6/26/02 3:38:47 PM]

0906. Status Bar

individual Panel objects.

Move on to the Panels tab of the Property Pages dialog box to create
one or more Panel objects, as shown in Figure 10-22. Each Panel
object has a number of properties that finely determine its
appearance and behavior. The most interesting property is Style,
which affects what's shown inside the Panel. The default value is 0-
sbrText, which displays the string assigned to the Text property. You
can use a Panel object as an indicator of the status of a particular
shift key using one of the settings 1-sbrCaps, 2-sbrNum, 3-sbrIns, or
4-sbrScrl. You can also automatically display the current time or date
using the 5-sbrTime or 6-sbrDate setting.

The Panels tab of the Property Pages dialog box of a StatusBar control.

As I mentioned previously, the Text property is the string that
appears in the Panel object when Style is sbrText. Key is the optional
key that identifies a Panel object in the Panels collection; Tag and

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0906.%20Status%20Bar.htm (2 of 5) [6/26/02 3:38:47 PM]

0906. Status Bar

ToolTipText have the usual meanings. The Alignment property
determines the position of the Panel's contents (0-sbrLeft, 1-
sbrCenter, or 2-sbrRight). The Bevel property affects the type of
border drawn around the Panel: Its default value is 1-sbrInset, but
you can change it to 2-sbrRaised or opt to have no 3-D border with 0-
sbrNoBevel.

The MinWidth property is the initial size of the Panel object in twips.
The AutoSize property affects the behavior of the Panel object when
the form is resized: 0-sbrNoAutoSize creates a fixed-size Panel. The
setting 1-sbrSpring is for Panels that resize with the parent form.
(When there are multiple Panels with this setting, all of them shrink
or expand accordingly.) The setting 2-sbrContents is for Panels
whose widths are determined by their contents.

You can display an icon or a bitmap inside a Panel. At design time,
you do this by loading an image from disk. Note that this is an
exception among common controls, which usually refer to images by
way of a companion ImageList control. The reason for this practice is
that you might want to load images of different sizes in each Panel,
whereas an ImageList control can contain images only of the same
width and height.

Run-Time Operations

You won't want to perform many operations on a StatusBar control at
run time. But you might need to change the Text property of a given
Panel object whose Style property is 0-sbrText, as in the following
example:

Display a message in the third panel.

StatusBar1.Panels(3).Text = "Hello World!"

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0906.%20Status%20Bar.htm (3 of 5) [6/26/02 3:38:47 PM]

0906. Status Bar

For longer messages, you can change the Style property of the
StatusBar control and assign a string to its SimpleText property:

' Display a message in the entire status bar.

StatusBar1.Style = sbrSimple

StatusBar1.SimpleText = "Saving data to file..."

' A lengthy operation

' ...

' Remember to restore the Style property.

StatusBar1.Style = sbrText

 Creating and removing Panel objects

You rarely create and destroy Panel objects at run time, but it's good
to know that you can do it if you really need to. To accomplish this,
use the Add method of the Panels collection, which has the following
syntax:

Add([Index], [Key], [Text], [Style], [Picture]) As Panel

where each argument corresponds to a property of the Panel object
being created. For example, this code creates a new Panel in the
leftmost position in the StatusBar control:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0906.%20Status%20Bar.htm (4 of 5) [6/26/02 3:38:47 PM]

0906. Status Bar

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0906.%20Status%20Bar.htm (5 of 5) [6/26/02 3:38:47 PM]

0907. Progress Bar

 Progress Bar

Introduction

The ProgressBar control is used to inform the user about the
progress state of a lengthy operation. This control is the simplest
one among those contained in the MsComCtl.OCX file because it
doesn't have any dependent objects and it doesn't expose any
custom events.

Setting Design-Time Properties

You have to set up a few properties at design time after you drop a
ProgressBar control on a form; in most cases, you can accept the
default values. The most important properties are Min and Max,
which determine the minimum and maximum values that can be
displayed by the progress bar.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0907.%20Progress%20Bar.htm (1 of 3) [6/26/02 3:38:49 PM]

0907. Progress Bar

The ProgressBar control that comes with Visual Basic 6 includes
two new properties, Orientation and Scrolling. The former lets you
create vertical progress bars; the latter lets you alternate between a
standard segmented bar and a smoother bar, as you can see in
Figure 10-24. You can change these values even at run time.

Run-Time Operations

There isn't much to say about run-time interaction with the
ProgressBar control. In practice, the only thing you can do through
code is set the Value property to a number in the range from Min to
Max. Any value outside this interval fires an error 380 "Invalid
property value." As I mentioned previously, the ProgressBar control
doesn't expose any custom events.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0907.%20Progress%20Bar.htm (2 of 3) [6/26/02 3:38:49 PM]

0907. Progress Bar

The effects of the Orientation, Scrolling, Appearance, and
BorderStyle properties on the ProgressBar control.

Only two other properties affect the aspect of the
control—Appearance and BorderStyle.Shows a number of possible
combinations of these properties.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0907.%20Progress%20Bar.htm (3 of 3) [6/26/02 3:38:49 PM]

0908. Tool Bar

 Tool Bar

Introduction

The majority of Windows applications include one or more toolbars,
which offer the end user the convenience of executing the most
common commands with a click of the mouse. Toolbars should
never replace menus—and for good reason: menus can be operated
with the keyboard; toolbars can't—but they surely make a program
more usable and give it a modern look and feel.

Visual Basic comes with a Toolbar control that can contain buttons
and other controls and that can be interactively customized by the
end user. The Visual Basic 6 version adds the flat style made
popular by Microsoft Internet Explorer and the support for building
drop-down menus.

The Toolbar control exposes the Buttons collection, which in turn
contains Button objects. Each Button object can be an actual push
button, a separator, or a placeholder for another control placed on
the toolbar (typically a TextBox control or a ComboBox control). In
addition, a Button object exposes the ButtonsMenus collection,
where each ButtonMenu object is an item of a drop-down menu. (If
the Button object isn't a drop-down menu, this collection is empty.)

Setting Design-Time Properties

In most cases, you define the appearance of a Toolbar at design time

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0908.%20Tool%20Bar.htm (1 of 9) [6/26/02 3:38:51 PM]

0908. Tool Bar

and then simply react to user's clicks on its buttons. You have two
ways to work with a Toolbar at design time: by using the Toolbar
Wizard or by manually setting properties. The two methods aren't
mutually exclusive: In most cases, in fact, you might find it
convenient to create a first version of a Toolbar control using the
wizard and then refine it in its Properties dialog box.

The Toolbar Wizard

 The Toolbar Wizard is a new add-in provided with Visual Basic 6.
But you won't find this wizard in the list of installable add-ins in the
Add-In Manager dialog box. Instead, you have to install the
Application Wizard add-in: After you do this, you'll find the Toolbar
Wizard command in the Add-In menu. If you select this command,
the wizard adds a new Toolbar control to the current form and lets
you customize it. Or you can place a Toolbar control on the form
yourself, and the wizard will be automatically activated.

Using the Toolbar Wizard is simple. You have a list of buttons in the
leftmost list box (see Figure 10-14) from which you select the
buttons you want to add to the Toolbar control. You can move items
between the two list boxes and change their order in the toolbar by
using the provided push buttons, or you can use drag-and-drop. The
wizard also creates the companion ImageList control on the form.
When you complete a toolbar, you'll be asked whether you want to
save it in an .rwp profile file, which lets you speed up the creation of
similar toolbars in future applications.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0908.%20Tool%20Bar.htm (2 of 9) [6/26/02 3:38:51 PM]

0908. Tool Bar

. Creating a toolbar using the Toolbar Wizard.

General properties

After you create a toolbar, you can access its Property Pages by
right-clicking on it and choosing Properties. The General tab of the
Property Pages dialog box includes most of the design-time
properties that let you control the fine points of the appearance and
behavior of a Toolbar control, as shown in Figures 10-15 and 10-16.
For example, you make the following decisions: Whether the end
user can customize the toolbar at run time (AllowCustomize
property), whether the toolbar will wrap on multiple lines when the
form is resized (Wrappable property), whether ToolTips are visible
(ShowTips property), and what the default size of buttons
(ButtonWidth and ButtonHeight properties) is. If necessary, buttons

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0908.%20Tool%20Bar.htm (3 of 9) [6/26/02 3:38:51 PM]

0908. Tool Bar

are automatically enlarged to account for their caption or image, so
in most cases you don't need to edit the default values of the latter
two properties.

A few new properties let you access the most interesting features
introduced in Visual Basic 6. You can create flat toolbars by setting
the Style property to the value 1-tbrFlat, and you can use the
TextAlignment property to modify the alignment of a button's
caption with respect to the button's image (0-tbrTextAlignBottom or
1-tbrTextAlignRight).

A toolbar's button can be in three possible states: normal, disabled,
or selected. (The selected state occurs when the mouse passes over
the button if Style is 1-tbrFlat.) Instead of having three properties to
point to different images of the same ImageList control, the Toolbar
control uses a different approach: Each Button object exposes only
one Image property—an index or a string key—and the state of the
button implicitly affects which ImageList control will be used. You
assign these three ImageList controls to the ImageList,
DisabledImageList, and HotImageList properties either at design
time or at run time. For example, you can mimic the behavior of
Internet Explorer 4 by using a set of black-and-white icons for the
normal state and a set of colorful icons for the selected state. If you
don't assign the latter two properties, the Toolbar automatically
creates a suitable image for the disabled or selected state.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0908.%20Tool%20Bar.htm (4 of 9) [6/26/02 3:38:51 PM]

0908. Tool Bar

 The General tab of the Property Pages dialog box of a Toolbar control.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0908.%20Tool%20Bar.htm (5 of 9) [6/26/02 3:38:51 PM]

0908. Tool Bar

The Buttons tab of the Property Pages dialog box of a Toolbar control.

Button objects

A Toolbar control without any Button objects is useless. You can
add Button objects using the Toolbar Wizard, as I explained
previously, or you can do it in the Buttons tab of the Property Pages
dialog box, as you can see in Figure 10-16. Each Button has a
Caption property (use an empty string if you want to display only the
icon), an optional Description that appears during a customization
operation, a Tag property, a Key in the Buttons collection (optional,
but use it to improve the readability of your code), a ToolTipText that
appears if the Toolbar's ShowTips property is True, and an Image
index or key to the associated ImageList controls.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0908.%20Tool%20Bar.htm (6 of 9) [6/26/02 3:38:51 PM]

0908. Tool Bar

Style is the most interesting property of a Button object. This
property affects the appearance and behavior of the button and can
be assigned one of the following values: 0-tbrDefault (a normal
button, which behaves like a push button), 1-tbrCheck (a button that
stays down when pressed, much like a CheckBox control), 2-
tbrButtonGroup (a button that belongs to a group in which only one
item can be in the selected state, similar to an OptionButton control),
3-tbrSeparator (a separator of fixed width), 4-tbrPlaceholder (a
separator whose size depends on the Width property; this style is
used to make room for another control placed on the toolbar), or 5-
tbrDropDown (a button with a down arrow beside it, which displays a
drop-down menu when clicked).

When the Style property is set to the value 5-tbrDropDown, you can
add one or more ButtonMenu objects to the current Button. (You can
create ButtonMenu items regardless of the button's style, but they're
visible only when the style is tbrDropDown.) Each ButtonMenu
object has a Text property (the caption of the menu line), an optional
Key in the ButtonMenus collection, and a Tag property.
Unfortunately, you can't associate an image with a ButtonMenu
object: Drop-down menus are inherently text-only, which definitely
contrasts with the graphical nature of the Toolbar control. See
Figure 10-17 for an example of a Toolbar control whose first button
has an associated drop-down menu.

 A toolbar with a drop-down menu.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0908.%20Tool%20Bar.htm (7 of 9) [6/26/02 3:38:51 PM]

0908. Tool Bar

Run-Time Operations

Once you have added a Toolbar control to a form, you have to trap
the user's actions on it. You might also need to programmatically
build the control at run time or let the user customize it and save the
new layout for subsequent sessions.

Creating Button and ButtonMenu objects

You can create new Button objects at run time using the Add method
of the Buttons collection, which has the following

Add([Index], [Key], [Caption], [Style], [Image]) As Button

 Index is the position at which the Button object will be inserted in
the collection, Key is its optional string key, Caption is the text
visible on the toolbar, Style determines the type of the button being
added (0-tbrNormal, 1-tbrCheck, 2tbrButtonGroup, 3-tbrSeparator, 4-
tbrPlaceholder, or 5-tbrDropDown), and Image is the index or the key
of an image in the three companion ImageList controls.

If you create a Button object whose Style property is tbrDropDown,
you can add one or more items to its ButtonMenus collection by
using the collection's Add method:

Add ([Index], [Key], [Text]) As ButtonMenu

 Customizing the Toolbar control

You can allow for users to customize the Toolbar control if you want.
You can choose from two ways to achieve this: You set the
AllowCustomization property to True to let users enter

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0908.%20Tool%20Bar.htm (8 of 9) [6/26/02 3:38:51 PM]

0908. Tool Bar

customization mode by double-clicking on the toolbar, or you
programmatically enter customization mode by executing the
Toolbar's Customize method. The latter approach is necessary if you
want to provide this capability only to a restricted group of users:

Private Sub Toolbar1_DblClick()

 If UserIsAdministrator Then Toolbar1.Customize

End Sub

 Whatever method you choose, you end up displaying the Customize
Toolbar dialog box

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0908.%20Tool%20Bar.htm (9 of 9) [6/26/02 3:38:51 PM]

0909. Slider Control

 Slider Control

Introduction

The Slider control provides a way for end users to select a numerical
value in a range. Conceptually, it's akin to the ScrollBar control, with
which it shares many properties and events. A major difference is
that there's only one kind of Slider control, which can create both
horizontal and vertical sliders. The Slider control can also work in
select-range mode, allowing your users to select a range rather than
a single value.

Setting Design-Time Properties

Once you drop a Slider control on a form, you should right-click it
and select the Properties menu command. In the General tab of the
Properties custom dialog box, you can set the Min, Max,
SmallChange, and LargeChange properties, which have the same
meaning and effects as in HScrollBar and VScrollBar controls. In this
tab, you can also set the SelectRange property, but this operation is
most often performed at run time. (See "Employing the SelectRange
Mode" later in this section.)

In the Appearance tab, you set a few properties that are peculiar to
this control. The Orientation property lets you set the direction of the
slider. The TickStyle property lets you select whether the slider has
unit ticks and where they appear. (Valid values are 0-
sldBottomRight, 1-sldTopLeft, 2-sldBoth, and 3-sldNoTicks.) The
TickFrequency property indirectly determines how many ticks will be

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0909.%20Slider%20Control.htm (1 of 3) [6/26/02 3:38:53 PM]

0909. Slider Control

displayed. For example, if Min is 0 and Max is 10 (the default
settings), a TickFrequency that equals 2 displays 6 ticks. The
TextPosition property lets you decide where the ToolTip appears.
(See "Showing the Value as a ToolTip" later in this section.)

Run-Time Operations

For most practical purposes, you can deal with a Slider control at
run time as if it were a scroll bar control: Slider controls expose the
Value property and the Change and Scroll events, exactly as scroll
bars do. The following brief sections describe two features of the
Slider control that are missing from the scroll bar controls.

Showing the value as a ToolTip

 Slider controls can display ToolTip text that follows the indicator
when it's being dragged by the user. You can control this new Visual
Basic 6 feature using two properties, Text and TextPosition. The

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0909.%20Slider%20Control.htm (2 of 3) [6/26/02 3:38:53 PM]

0909. Slider Control

former is the string that appears in the ToolTip window; the latter
determines where the ToolTip appears with respect to the indicator.
(Possible values are 0-sldAboveLeft and 1-sldBelowRight.) You can
also set the TextPosition property at design time in the Appearance
tab of the Property Pages dialog box.

You generally use these properties to show the current value in a
ToolTip window near the indicator. To do so, you need just one
statement in the Scroll event procedure:

Private Sub Slider1_Scroll()

 Slider1.Text = "Value = " & Slider1.Value

End Sub

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0909.%20Slider%20Control.htm (3 of 3) [6/26/02 3:38:53 PM]

0910. Date Picker

 Date Picker

The DateTimePicker control is a text box especially designed for
Date or Time values. The text box is subdivided into subfields, one
for each individual component (day, month, year, hour, minute, and
second). This control supports all the usual date and time formats
(including a custom format) and the ability to return a Null value (if
the user doesn't want to select a particular date). You can even
define your own custom subfields.

At run time, end users can advance through subfields using the Left
and Right arrow keys and can increment and decrement their values
using the Up and Down arrow keys. They can display a drop-down
calendar (if the UpDown property is set to False) or modify the
current value of the highlighted component using the companion
spin buttons (if the value of UpDown is True).

Setting Design-Time Properties

By default, a Down arrow appears to the right of the control, much
like a regular ComboBox control: A click on the arrow drops down a
calendar, which lets users select a date without typing any keys. If
you set the UpDown property to True, however, the Down arrow is
replaced by a pair of spin buttons, which let users increment or
decrement the value of individual subfields using only the mouse.

The CheckBox property, if True, displays a check box near the left
border of the control: Users can deselect this check box if they don't
intend to actually select any dates. (See Figure 11-7.)

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0910.%20Date%20Picker.htm (1 of 5) [6/26/02 3:38:55 PM]

0910. Date Picker

The DateTimePicker control shares a few properties with the
MonthView control. For example, it exposes a Value property, which
returns the Date value entered by the end user, and the MinDate and
MaxDate properties, which define the interval of valid dates.

The drop-down calendar is nothing but a MonthView control that can
show only one month at a time. Thus, the DateTimePicker control
also exposes all the color properties of the MonthView control, even
though each now has a different name: CalendarForeColor,
CalendarBackColor, CalendarTitleForeColor,
CalendarTitleBackColor, and CalendarTrailingForeColor. Oddly, the
control doesn't expose the standard ForeColor and BackColor
properties, so while you can modify the appearance of the drop-
down calendar, you can't programmatically change the default
colors of the edit portion of the control!

The Format property affects what's displayed in the control and can
be one of the following values: 0-dtpLongDate, 1-dtpShortDate, 2-
dtpTime, or 3-dtpCustom. If you select a custom format, you can
assign a suitable string to the CustomFormat property. This property
accepts the same formatting strings that you would pass to a Format
function that works with date or time values. You can use this string:

'Date is' dddd MMM d, yyy

to display a value such as

Date is Friday Nov 5, 1999

As you see, you can include literal strings by enclosing them within
single quotation marks. As I'll explain in a moment, the
CustomFormat property can be used to create custom subfields too.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0910.%20Date%20Picker.htm (2 of 5) [6/26/02 3:38:55 PM]

0910. Date Picker

. Different styles of the DateTimePicker control.

The DateTimePicker control can be bound to a data source, so it
exposes the usual DataSource, DataMember, DataField, and
DataFormat properties. The DataFormat property isn't supported
when the control is bound to a standard Data or RemoteData control,
but in either case you can modify the format of the displayed value
using the Format and CustomFormat properties.

Run-Time Operations

At run time, you set and retrieve the contents in the DateTimePicker
control through the Value property or by means of the Year, Month,
Day, DayOfWeek, Hour, Minute, and Second properties. For example,
you can programmatically increment the month portion of a date
displayed in a DateTimePicker control with the following statements:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0910.%20Date%20Picker.htm (3 of 5) [6/26/02 3:38:55 PM]

0910. Date Picker

DTPicker1.Month = (DTPicker1.Month Mod 12) + 1

If DTPicker1.Month = 1 Then DTPicker1.Year = DTPicker1.Year + 1

If CheckBox is True and the user has deselected the check box, all
date-related properties return Null.

The DateTimePicker control exposes many of the events supported
by a standard TextBox control, including Change, KeyDown,
KeyPress, KeyUp, MouseDown, MouseMove, MouseUp, Click, and
DblClick. All keyboard and mouse events refer to the edit portion of
the control and so don't fire when a calendar has been dropped
down.

When the user clicks on the Down arrow, a DropDown event fires
just before the drop-down calendar actually appears—that is, if the
UpDown property is False (the default value). When the user selects
a date in the drop-down calendar, a CloseUp event fires. These
events aren't particularly useful, however, because you don't have
much control over the calendar itself, apart from the colors it uses.
When the user selects a date in the drop-down calendar, the Change
event fires before the CloseUp event.

Managing callback fields

The most intriguing feature of the DateTimePicker control is the
capability to define custom subfields, also known as callback fields.
To define a callback field, you use a string of one or more X
characters in the value assigned to the CustomFormat property. You
can define multiple callback fields by using strings with different
numbers of Xs. For example, the following format defines a date field
with two callback fields:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0910.%20Date%20Picker.htm (4 of 5) [6/26/02 3:38:55 PM]

0910. Date Picker

DTPicker1.CustomFormat = "MMM d, yyy '(week 'XX')' XXX"

In the code sample that follows, the XX field is defined as the
number of weeks since January 1, and the XXX field is the name of
the holiday, if any, that occurs on the displayed date.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0910.%20Date%20Picker.htm (5 of 5) [6/26/02 3:38:55 PM]

0911. Tabbed Control

 Tabbed Control

The SSTab control permits you to create tabbed dialog boxes almost
the same way the TabStrip common control does it. The most
important difference between the two controls is that the SSTab
control is a real container, so you can place child controls directly
on its surface. You can even switch among tabbed pages at design
time, making the job of preparing the control much simpler and
quicker than with the TabStrip control. Many programmers find it
easier to work with the SSTab control because the control doesn't
contain dependent objects, and the syntax of properties and events
is more straightforward.

The SSTab control is embedded in the TabCtl32.ocx file, which must
therefore be distributed with any Visual Basic application that uses
this control.

Setting Design-Time Properties

The first thing to do after you drop an SSTab control on a form is to
change its Style property from the default 0-ssStyleTabbedDialog
value to the more modern 1-ssStylePropertyPage setting, which you
can see in Figure 12-10. The tabs are usually displayed on the upper
border of the control, but you can change this default setting by
using the TabOrientation property.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0911.%20Tabbed%20Control.htm (1 of 3) [6/26/02 3:38:57 PM]

0911. Tabbed Control

The General tab of the Property Pages dialog box of an SSTab control.

You can add new tabs (or delete existing ones) by typing a value in
the TabCount field (which corresponds to the Tabs property), and
you can create multiple rows of tabs by setting a suitable value for
the TabsPerRow property. After you have created enough tabs, you
can use the spin buttons to move from tab to tab and modify each
one's TabCaption property. (This property is the only field in the
dialog box whose value depends on the Current Tab field.) Tab
captions can include & characters to define hot keys for a quick
selection.

The TabHeight property is the height in twips of all the tabs in the
control. The TabMaxWidth property is the maximum width of a tab.
(A zero width means that the tab is just large enough to
accommodate its caption.) The WordWrap property must be True to
let longer captions wrap around. If ShowFocusRect is True, a focus
rectangle is displayed on the tab that has the focus.

Each tab can display a little image. To set it at design time, you first
set the current tab in the General page of the Properties dialog box,

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0911.%20Tabbed%20Control.htm (2 of 3) [6/26/02 3:38:57 PM]

0911. Tabbed Control

switch to the Picture tab, click on the Picture property in the leftmost
listbox, and then select the bitmap or icon that you want to assign to
the current tab. This bitmap can be referenced in code using the
TabPicture property.

After you have created the tabs you need, you can place controls on
each one of them. This operation is simple because you can select
tabs even at design time. But you should be aware of an important
detail: From Visual Basic's standpoint, all the controls you place on
different tabs are contained in the SSTab control. In other words, the
container is the SSTab control, not its tab pages. This has a number
of implications—for example, if you have two groups of
OptionButton controls on two different tab pages of the SSTab
control, you should place each group in a separate Frame or another
container, otherwise Visual Basic sees them as a single group.

Run-Time Operations

The main property of the SSTab control is Tab, which returns the
index of the tab currently selected by the user. You can also set it to
switch to another tab by means of code. The first tab has a 0 index.

Creating new tabs

You can create new tabs at run time by increasing the value of the
Tabs property. You can append the new tab in one place only:
following all the existing ones.

SSTab1.Tabs = SSTab1.Tabs + 1

SSTab1.TabCaption(SSTab1.Tabs - 1) = "Summary"

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0911.%20Tabbed%20Control.htm (3 of 3) [6/26/02 3:38:57 PM]

0912. Masked Edit Control

 Masked Edit Control

NOTE

 The Masked Edit control can be added to Toolbox by selecting
Microsoft Masked Edit Control 6.0 from the Components dialog box.

The Masked Edit control has several properties that assist in the
validation of user input. Some of the frequently used properties are:

• Mask

• Format

• Text and ClipText

• AutoTab

Mask Property

To define the Masked Edit control, use the Mask property. The Mask
property forces data to be entered into a predefined template. You
can set this property at design time or at run time. Although you can
use standard formats at design time, and the control will distinguish
between numeric and alphabetic characters, you may want to write

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0912.%20Masked%20Edit%20Control.htm (1 of 3) [6/26/02 3:38:59 PM]

0912. Masked Edit Control

code to validate content such as the correct month or time of day.
Each character position in the Masked Edit control corresponds to
either a placeholder of a specified type or to a literal character.

The following code shows how to use the Mask property of the
Masked Edit control to create an input mask for entering a United
States telephone number, complete with placeholders for area code
and local number:

mskPhone.Mask = "(###)###-####"

When the Mask property is an empty string (""), the control behaves
like a standard TextBox control. When you define an input mask,
underscores appear beneath every placeholder in the mask. You can
replace a placeholder only with a character that is of the same type
as the one specified in the input mask.

To clear the Text property when you have a mask defined, set the
Text property to the default mask setting. For example:

mskPhoneNumber.Text = "(___)___-____"

Format Property

Use the Format property to define the format for displaying and
printing the contents of a control, such as numbers, dates, times,
and text. You use the same format expressions as defined by the
Visual Basic Format function, except that you cannot use named
formats such as "Currency."

Text and ClipText

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0912.%20Masked%20Edit%20Control.htm (2 of 3) [6/26/02 3:38:59 PM]

0912. Masked Edit Control

The Text property returns the data that the user has typed, along
with the mask. The ClipText property returns only the data the user
has typed. This is particularly important when implementing a
Masked Edit control with a database. Figure 3.7 illustrates the text
entered into the Masked Edit control, and the code that follows
shows the use of these properties.

'The user entered 4255551212

Print "The user entered " & mskPhoneNumber.ClipText

'The control shows (425)555-1212

Print "The control shows " & mskPhoneNumber.Text

The ClipText property of the MaskEdit control shown in Figure 3.7
returns a value of 4255551212, and the Text property returns
(425)555-1212.

AutoTab

When the AutoTab property is set to True, and the user enters the
maximum number of characters specified by the Mask property for
the control, the insertion point automatically moves to the control
with the next TabIndex.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/0912.%20Masked%20Edit%20Control.htm (3 of 3) [6/26/02 3:38:59 PM]

1003. Accessing File - An Overview

 Accessing File - An Overview

Visual Basic has always included many powerful commands for
dealing with text and binary files. While Visual Basic 6 hasn't
extended the set of built-in functions, it has nonetheless indirectly
extended the potential of the language by adding a new and
interesting FileSystemObject object that makes it very easy to deal
with files and directories. In this section, I provide an overview of all
the VBA functions and statements related to files, with many useful
tips so that you can get as much as you can from them and stay
away from the most recurrent problems.

Handling Files

In general, you can't do many things to a file without opening it.
Visual Basic lets you delete a file (using the Kill command), move or
rename it (using the Name ... As command), and copy it elsewhere
(using the FileCopy command):

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1003.%20Accessing%20File%20-%20An%20Overview.htm (1 of 4) [6/26/02 3:39:34 PM]

1003. Accessing File - An Overview

' Rename a file--note that you must specify the path in the
target,

' otherwise the file will be moved to the current directory.

Name "c:\vb6\TempData.tmp" As "c:\vb6\TempData.Doc"

' Move the file to another directory, possibly on another drive.

Name "c:\vb6\TempData.Doc" As "d:\VS98\Temporary.Dat"

' Make a copy of a file--note that you can change the name
during the copy

' and that you can omit the filename portion of the target file.

FileCopy "d:\VS98\Temporary.Dat", "d:\temporary.Dat"

' Delete one or more files--Kill also supports wildcards.

Kill "d:\temporary.*"

You can read and modify the attributes of a file using the GetAttr
function and the SetAttr command, respectively. The GetAttr
function returns a bit-coded value, so you need to test its individual
bits using intrinsic constants provided by VBA. Here's a reusable

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1003.%20Accessing%20File%20-%20An%20Overview.htm (2 of 4) [6/26/02 3:39:34 PM]

1003. Accessing File - An Overview

function that builds a descriptive string with all the attributes of the
file:

' This routine also works with open files

' and raises an error if the file doesn't exist.

Function GetAttrDescr(filename As String) As String

 Dim result As String, attr As Long

 attr = GetAttr(filename)

 ' GetAttr also works with directories.

 If attr And vbDirectory Then result = result & " Directory"

 If attr And vbReadOnly Then result = result & " ReadOnly"

 If attr And vbHidden Then result = result & " Hidden"

 If attr And vbSystem Then result = result & " System"

 If attr And vbArchive Then result = result & " Archive"

 ' Discard the first (extra) space.

 GetAttrDescr = Mid$(result, 2)

End Function

Similarly, you change the attributes of a file or a directory by passing

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1003.%20Accessing%20File%20-%20An%20Overview.htm (3 of 4) [6/26/02 3:39:34 PM]

1003. Accessing File - An Overview

the SetAttr command a combination of values, as in the following
code:

' Mark a file as Archive and Read-only.

filename = "d:\VS98\Temporary.Dat"

SetAttr filename, vbArchive + vbReadOnly

' Change a file from hidden to visible, and vice versa.

SetAttr filename, GetAttr(filename) Xor vbHidden

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1003.%20Accessing%20File%20-%20An%20Overview.htm (4 of 4) [6/26/02 3:39:34 PM]

1004. Random Access Files

 Random Access Files

• Note that to access a particular data item in a sequential file,
you need to read in all items in the file prior to the item of
interest. This works acceptably well for small data files of
unstructured data, but for large, structured files, this process is
time-consuming and wasteful. Sometimes, we need to access
data in nonsequential ways. Files which allow nonsequential
access are random access files.

• To allow nonsequential access to information, a random
access file has a very definite structure. A random access file is
made up of a number of records, each record having the same
length (measured in bytes). Hence, by knowing the length of
each record, we can easily determine (or the computer can)
where each record begins. The first record in a random access
file is Record 1, not 0 as used in Visual Basic arrays. Each
record is usually a set of variables, of different types, describing
some item. The structure of a random access file is:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1004.%20Random%20Access%20Files.htm (1 of 15) [6/26/02 3:39:38 PM]

1004. Random Access Files

• A good analogy to illustrate the differences between
sequential files and random access files are cassette music
tapes and compact discs. To hear a song on a tape (a sequential
device), you must go past all songs prior to your selection. To
hear a song on a CD (a random access device), you simply go
directly to the desired selection. One difference here though is
we require all of our random access records to be the same
length - not a good choice on CD's!

• To write and read random access files, we must know the
record length in bytes. Some variable types and their length in
bytes are:

Type Length(Bytes)

Integer 2

Long 4

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1004.%20Random%20Access%20Files.htm (2 of 15) [6/26/02 3:39:38 PM]

1004. Random Access Files

Single 4

Double 8

String 1 byte per character

So, for every variable that is in a file's record, we need to add up the
individual variable length's to obtain the total record length. To ease
this task, we introduce the idea of user-defined variables.

User-Defined Variables

• Data used with random access files is most often stored in
user-defined variables. These data types group variables of
different types into one assembly with a single, user-defined
type associated with the group. Such types significantly simplify
the use of random access files.

• The Visual Basic keyword Type signals the beginning of a
user-defined type declaration and the words End Type signal the
end. An example best illustrates establishing a user-defined
variable. Say we want to use a variable that describes people by
their name, their city, their height, and their weight. We would
define a variable of Type Person as follows:

Type Person

Name As String

City As String

Height As Integer

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1004.%20Random%20Access%20Files.htm (3 of 15) [6/26/02 3:39:38 PM]

1004. Random Access Files

Weight As Integer

End Type

These variable declarations go in the same code areas as normal
variable declarations, depending on desired scope. At this point, we
have not reserved any storage for the data. We have simply
described to Visual Basic the layout of the data.

• To create variables with this newly defined type, we employ
the usual Dim statement. For our Person example, we would
use:

Dim Lou As Person

Dim John As Person

Dim Mary As Person

And now, we have three variables, each containing all the
components of the variable type Person. To refer to a single
component within a user-defined type, we use the dot-notation

VarName.Component

As an example, to obtain Lou's Age, we use:

Dim AgeValue as Integer

.

.
AgeValue = Lou.Age

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1004.%20Random%20Access%20Files.htm (4 of 15) [6/26/02 3:39:38 PM]

1004. Random Access Files

Writing and Reading Random Access Files

• We look at writing and reading random access files using a
user-defined variable. For other variable types, refer to Visual
Basic on-line help. To open a random access file named
RanFileName, use:

Open RanFileName For Random As #N Len
= RecordLength

where N is an available file number and RecordLength is the length
of each record. Note you don't have to specify an input or output
mode. With random access files, as long as they're open, you can
write or read to them.

• To close a random access file, use:

Close N

• As mentioned previously, the record length is the sum of the
lengths of all variables that make up a record. A problem arises
with String type variables. You don't know their lengths ahead of
time. To solve this problem, Visual Basic lets you declare fixed
lengths for strings. This allows you to determine record length.
If we have a string variable named StrExample we want to limit
to 14 characters, we use the declaration:

Dim StrExample As String * 14

Recall each character in a string uses 1
byte, so the length of such a variable is 14
bytes.

• Recall our example user-defined variable type, Person. Let's

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1004.%20Random%20Access%20Files.htm (5 of 15) [6/26/02 3:39:38 PM]

1004. Random Access Files

revisit it, now with restricted string lengths:

Type Person

Name As String * 40

City As String * 35

Height As Integer

Weight As Integer

End Type

The record length for this variable type is 79 bytes (40 + 35 +2 + 2).
To open a file named PersonData as File #1, with such records, we
would use the statement:

Open PersonData For Random As #1 Len = 79

• The Get and Put statements are used to read from and write
to random access files, respectively. These statements read or
write one record at a time. The syntax for these statements is
simple:

Get #N, [RecordNumber], variable

Put #N, [RecordNumber], variable

The Gets statement reads from the file and stores
data in the variable, whereas the Put statement
writes the contents of the specified variable to the
file. In each case, you can optionally specifiy the
record number. If you do not specify a record
number, the next sequential position is used.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1004.%20Random%20Access%20Files.htm (6 of 15) [6/26/02 3:39:38 PM]

1004. Random Access Files

• The variable argument in the Get and Put statements is
usually a single user-defined variable. Once read in, you obtain
the component parts of this variable using dot-notation. Prior to
writing a user-defined variable to a random access file, you
'load' the component parts using the same dot-notation.

• There's a lot more to using random access files; we've only
looked at the basics. Refer to your Visual Basic documentation
and on-line help for further information. In particular, you need
to do a little cute programming when deleting records from a
random access file or when 'resorting' records.

Using the Open and Save Common Dialog Boxes

• Note to both write and read sequential and random access
files, we need a file name for the Open statement. To ensure
accuracy and completeness, it is suggested that common dialog
boxes (briefly studied in Class 4) be used to get this file name
information from the user. I'll provide you with a couple of code
segments that do just that. Both segments assume you have a
common dialog box on your form named cdlFiles, with the
CancelError property set equal to True. With this property True,
an error is generated by Visual Basic when the user presses the
Cancel button in the dialog box. By trapping this error, it allows
an elegant exit from the dialog box when canceling the operation
is desired.

• The code segment to obtain a file name (MyFileName with
default extension Ext) for opening a file to read is:

Dim MyFileName As String, Ext As String

.
file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1004.%20Random%20Access%20Files.htm (7 of 15) [6/26/02 3:39:38 PM]

1004. Random Access Files

.
cdlFiles.Filter = "Files (*." + Ext + ")|*." + Ext

cdlFiles.DefaultExt = Ext

cdlFiles.DialogTitle = "Open File"

cdlFiles.Flags = cdlOFNFileMustExist +
cdlOFNPathMustExist

On Error GoTo No_Open

cdlFiles.ShowOpen

MyFileName = cdlFiles.filename

.

.
Exit Sub

No_Open:

Resume ExitLIne

ExitLine:

Exit Sub

End Sub

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1004.%20Random%20Access%20Files.htm (8 of 15) [6/26/02 3:39:38 PM]

1004. Random Access Files

A few words on what's going on here. First, some properties are set
such that only files with Ext (a three letter string variable) extensions
are displayed (Filter property), the default extension is Ext
(DefaultExt property), the title bar is set (DialogTitle property), and
some Flags are set to insure the file and path exist (see Appendix II
for more common dialog flags). Error trapping is enabled to trap the
Cancel button. Finally, the common dialog box is displayed and the
filename property returns with the desired name. That name is put in
the string variable MyFileName. What you do after obtaining the file
name depends on what type of file you are dealing with. For
sequential files, you would open the file, read in the information, and
close the file. For random access files, we just open the file here.
Reading and writing to/from the file would be handled elsewhere in
your coding.

• The code segment to retrieve a file name (MyFileName) for
writing a file is:

Dim MyFileName As String, Ext As String

.

.
cdlFiles.Filter = "Files (*." + Ext + ")|*." + Ext

cdlFiles.DefaultExt = Ext

cdlFiles.DialogTitle = "Save File"

cdlFiles.Flags = cdlOFNOverwritePrompt +
cdlOFNPathMustExist

On Error GoTo No_Save

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1004.%20Random%20Access%20Files.htm (9 of 15) [6/26/02 3:39:38 PM]

1004. Random Access Files

cdlFiles.ShowSave

MyFileName = cdlFiles.filename

.

.
Exit Sub

No_Save:

Resume ExitLine

ExitLine:

EndSub

EndSub

Note this code is essentially the same used for an Open file name.
The Flags property differs slightly. The user is prompted if a
previously saved file is selected for overwrite. After obtaining a valid
file name for a sequential file, we would open the file for output, write
the file, and close it. For a random access file, things are trickier. If
we want to save the file with the same name we opened it with, we
simply close the file. If the name is different, we must open a file
(using a different number) with the new name, write the complete
random access file, then close it. Like I said, it's trickier.

• We use both of these code segments in the final example
where we write and read sequential files.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1004.%20Random%20Access%20Files.htm (10 of 15) [6/26/02 3:39:38 PM]

1004. Random Access Files

Example :

Note Editor - Reading and Saving Text Files

1. We now add the capability to read in and save the contents of the
text box in the Note Editor application from last class. Load that
application. Add a common dialog box to your form. Name it cdlFiles
and set the CancelError property to True.

2. Modify the File menu (use the Menu Editor and the Insert button)
in your application, such that Open and Save options are included.
The File menu should now read:

 File

 New

 Open

 Save

 Exit

 Properties for these new menu items should be:

Caption Name Shortcut

&Open mnuFileOpen [None]

&Save mnuFileSave [None]

3. The two new menu options need code. Attach this code to the

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1004.%20Random%20Access%20Files.htm (11 of 15) [6/26/02 3:39:38 PM]

1004. Random Access Files

mnuFileOpen_Click event. This uses a modified version of the code
segment seen previously. We assign the extension ned to our note
editor files.

 Private Sub mnuFileOpen_Click()

 cdlFiles.Filter = "Files (*.ned)|*.ned"

 cdlFiles.DefaultExt = "ned"

 cdlFiles.DialogTitle = "Open File"

 cdlFiles.Flags = cdlOFNFileMustExist + cdlOFNPathMustExist

 On Error GoTo No_Open

 cdlFiles.ShowOpen

 Open cdlFiles.filename For Input As #1

 txtEdit.Text = Input(LOF(1), 1)

 Close 1

 Exit Sub

 No_Open:

 Resume ExitLine

 ExitLine:

 Exit Sub

 End Sub

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1004.%20Random%20Access%20Files.htm (12 of 15) [6/26/02 3:39:38 PM]

1004. Random Access Files

 And for the mnuFileSave_Click procedure, use this code. Much of
this can be copied from the previous procedure.

 Private Sub mnuFileSave_Click()

 cdlFiles.Filter = "Files (*.ned)|*.ned"

 cdlFiles.DefaultExt = "ned"

 cdlFiles.DialogTitle = "Save File"

 cdlFiles.Flags = cdlOFNOverwritePrompt + cdlOFNPathMustExist

 On Error GoTo No_Save

 cdlFiles.ShowSave

 Open cdlFiles.filename For Output As #1

 Print #1, txtEdit.Text

 Close 1

 Exit Sub

 No_Save:

 Resume ExitLine

 ExitLine:

 Exit Sub

 End Sub

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1004.%20Random%20Access%20Files.htm (13 of 15) [6/26/02 3:39:38 PM]

1004. Random Access Files

Each of these procedures is similar. The dialog box is opened and, if
a filename is returned, the file is read/written. If Cancel is pressed,
no action is taken. These routines can be used as templates for file
operations in other applications.

4. Save your application. Run it and test the Open and Save
functions. Note you have to save a file before you can open one.
Check for proper operation of the Cancel button in the common
dialog box.

5. If you have the time, there is one major improvement that should
be made to this application. Notice that, as written, only the text
information is saved, not the formatting (bold, italic, underline, size).
Whenever a file is opened, the text is displayed based on current
settings. It would be nice to save formatting information along with
the text. This can be done, but it involves a fair amount of
reprogramming. Suggested steps:

 A. Add lines to the mnuFileSave_Click routine that write the text box
properties FontBold, FontItalic, FontUnderline, and FontSize to a
separate sequential file. If your text file is named TxtFile.ned, I would
suggest naming the formatting file TxtFile.fmt. Use string functions
to put this name together. That is, chop the ned extension off the
text file name and tack on the fmt extension. You'll need the Len()
and Left() functions.

 B. Add lines to the mnuFileOpen_Click routine that read the text box
properties FontBold, FontItalic, FontUnderline, and FontSize from
your format sequential file. You'll need to define some intermediate
variables here because Visual Basic won't allow you to read
properties directly from a file. You'll also need logic to set/reset any
check marks in the menu structure to correspond to these input
properties.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1004.%20Random%20Access%20Files.htm (14 of 15) [6/26/02 3:39:38 PM]

1004. Random Access Files

 C. Add lines to the mnuFileNew_Click procedure that, when the user
wants a new file, reset the text box properties FontBold, FontItalic,
FontUnderline, and FontSize to their default values and set/reset the
corresponding menu check marks.

 D. Try out the modified application. Make sure every new option
works as it should.

 Actually, there are 'custom' tools (we'll look at custom tools in
Class 10) that do what we are trying to do with this modification, that
is save text box contents with formatting information. Such files are
called 'rich text files' or rtf files. You may have seen these before
when transferring files from one word processor to another.

 6. Another thing you could try: Modify the message box that
appears when you try to Exit. Make it ask if you wish to save your file
before exiting - provide Yes, No, Cancel buttons. Program the code
corresponding to each possible response. Use calls to existing
procedures, if possible

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1004.%20Random%20Access%20Files.htm (15 of 15) [6/26/02 3:39:38 PM]

1005. Sequential Access Files

 Sequential Access Files

• In many applications, it is helpful to have the capability to
read and write information to a disk file. This information could
be some computed data or perhaps information loaded into a
Visual Basic object.

• Visual Basic supports two primary file formats: sequential
and random access. We first look at sequential files.

• A sequential file is a line-by-line list of data. You can view a
sequential file with any text editor. When using sequential files,
you must know the order in which information was written to the
file to allow proper reading of the file.

• Sequential files can handle both text data and variable
values. Sequential access is best when dealing with files that
have lines with mixed information of different lengths. I use
them to transfer data between applications.

Sequential File Output (Variables)

• We first look at writing values of variables to sequential
files. The first step is to Open a file to write information to. The
syntax for opening a sequential file for output is:

Open SeqFileName For Output As #N

where SeqFileName is the name of the file to open and N is

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1005.%20Sequential%20Access%20Files.htm (1 of 10) [6/26/02 3:39:41 PM]

1005. Sequential Access Files

an integer file number. The filename must be a complete
path to the file.

• When done writing to the file, Close it using:

Once a file is closed, it is saved on the disk under the path and
filename used to open the file.

• Information is written to a sequential file one line at a time.
Each line of output requires a separate Basic statement.

• There are two ways to write variables to a sequential file.
The first uses the Write statement:

 Write #N, [variable list]

 where the variable list has variable names delimited by commas. (If
the variable list is omitted, a blank line is printed to the file.) This
statement will write one line of information to the file, that line
containing the variables specified in the variable list. The variables
will be delimited by commas and any string variables will be
enclosed in quotes. This is a good format for exporting files to other
applications like Excel.

Example

Dim A As Integer, B As String, C As Single, D As Integer

.

.
Open TestOut For Output As #1

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1005.%20Sequential%20Access%20Files.htm (2 of 10) [6/26/02 3:39:41 PM]

1005. Sequential Access Files

Write #1, A, B, C

Write #1, D

Close 1

After this code runs, the file TestOut will have two lines. The first will
have the variables A, B, and C, delimited by commas, with B (a string
variable) in quotes. The second line will simply have the value of the
variable D.

• The second way to write variables to a sequential file is with
the Print statement:

 Print #N, [variable list]

This statement will write one line of information to the file, that line
containing the variables specified in the variable list. (If the variable
list is omitted, a blank line will be printed.) If the variables in the list
are separated with semicolons (;), they are printed with a single
space between them in the file. If separated by commas (,), they are
spaced in wide columns. Be careful using the Print statement with
string variables. The Print statement does not enclose string
variables in quotes, hence, when you read such a variable back in,
Visual Basic may have trouble knowing where a string ends and
begins. It's good practice to 'tack on' quotes to string variables when
using Print.

Example

Dim A As Integer, B As String, C As Single, D As Integer

.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1005.%20Sequential%20Access%20Files.htm (3 of 10) [6/26/02 3:39:41 PM]

1005. Sequential Access Files

.
Open TestOut For Output As #1

Print #1, A; Chr(34) + B + Chr(34), C

Print #1, D

Close 1

After this code runs, the file TestOut will have two lines. The first will
have the variables A, B, and C, delimited by spaces. B will be
enclosed by quotes [Chr(34)]. The second line will simply have the
value of the variable D.

Quick Example: Writing Variables to Sequential Files

1. Start a new project.

 2. Attach the following code to the Form_Load procedure. This code
simply writes a few variables to sequential files.

 Private Sub Form_Load()

 Dim A As Integer, B As String, C As Single, D As Integer

 A = 5

 B = "Visual Basic"

 C = 2.15

 D = -20

 Open "Test1.Txt" For Output As #1

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1005.%20Sequential%20Access%20Files.htm (4 of 10) [6/26/02 3:39:41 PM]

1005. Sequential Access Files

 Open "Test2.Txt" For Output As #2

 Write #1, A, B, C

 Write #1, D

 Print #2, A, B, C

 Print #2, D

 Close 1

 Close 2

 End Sub

 3. Run the program. Use a text editor (try the Windows 95 Notepad)
to examine the contents of the two files, Test1.Txt and Test2.Txt.
They are probably in the Visual Basic main directory. Note the
difference in the two files, especially how the variables are delimited
and the fact that the string variable is not enclosed in quotes in
Test2.Txt. Save the application, if you want to.

Sequential File Input (Variables)

• To read variables from a sequential file, we essentially
reverse the write procedure. First, open the file using:

 Open SeqFileName For Input As #N

 where N is an integer file number and SeqFileName is a complete
file path. The file is closed using:

 Close N

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1005.%20Sequential%20Access%20Files.htm (5 of 10) [6/26/02 3:39:41 PM]

1005. Sequential Access Files

• The Input statement is used to read in variables from a
sequential file. The format is:

 Input #N, [variable list]

 The variable names in the list are separated by commas. If no
variables are listed, the current line in the file N is skipped.

• Note variables must be read in exactly the same manner as
they were written. So, using our previous example with the
variables A, B, C, and D, the appropriate statements are:

 Input #1, A, B, C

 Input #1, D

 These two lines read the variables A, B, and C from
the first line in the file and D from the second line. It
doesn't matter whether the data was originally
written to the file using Write or Print (i.e. commas
are ignored).

Quick Example: Reading Variables from Sequential Files

1. Start a new project or simply modify the previous quick example.

 2. Attach the following code to the Form_Load procedure. This code
reads in files created in the last quick example.

 Private Sub Form_Load()

 Dim A As Integer, B As String, C As Single, D As Integer

 Open "Test1.Txt" For Input As #1

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1005.%20Sequential%20Access%20Files.htm (6 of 10) [6/26/02 3:39:41 PM]

1005. Sequential Access Files

 Input #1, A, B, C

 Debug.Print "A="; A

 Debug.Print "B="; B

 Debug.Print "C="; C

 Input #1, D

 Debug.Print "D="; D

 Close 1

 End Sub

 Note the Debug.Print statements and how you can add some
identifiers (in quotes) for printed information.

 3. Run the program. Look in the debug window and note the variable
values. Save the application, if you want to.

 4. Rerun the program using Test2.Txt as in the input file. What
differences do you see? Do you see the problem with using Print
and string variables? Because of this problem, I almost always use
Write (instead of Print) for saving variable information to files. Edit
the Test2.Txt file (in Notepad), putting quotes around the words
Visual Basic. Rerun the program using this file as input - it should
work fine now.

Writing and Reading Text Using Sequential Files

• In many apllications, we would like to be able to save text
information and retrieve it for later reference. This information
could be a text file created by an application or the contents of a

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1005.%20Sequential%20Access%20Files.htm (7 of 10) [6/26/02 3:39:41 PM]

1005. Sequential Access Files

Visual Basic text box.

• Writing Text Files:

 To write a sequential text file, we follow the simple
procedure: open the file, write the file, close the file.
If the file is a line-by-line text file, each line of the
file is written to disk using a single Print statement:

 Print #N, Line

 where Line is the current line (a text string). This statement should
be in a loop that encompasses all lines of the file. You must know
the number of lines in your file, beforehand.

 If we want to write the contents of the Text property of a text box
named txtExample to a file, we use:

 Print #N, txtExample.Text

 Example

 We have a text box named txtExample. We want to save the
contents of the Text property of that box in a file named MyText.ned
on the c: drive in the \MyFiles directory. The code to do this is:

 Open "c:\MyFiles\MyText.ned" For Output As #1

 Print #1, txtExample.Text

 Close 1

 The text is now saved in the file for later retrieval.

• Reading Text Files:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1005.%20Sequential%20Access%20Files.htm (8 of 10) [6/26/02 3:39:41 PM]

1005. Sequential Access Files

 To read the contents of a previously-saved text
file, we follow similar steps to the writing process:
open the file, read the file, close the file. If the file is
a text file, we read each individual line with the Line
Input command:

 Line Input #1, Line

 This line is usually placed in a Do/Loop structure that is repeated
untill all lines of the file are read in. The EOF() function can be used
to detect an end-of-file condition, if you don't know, a prioiri, how
many lines are in the file.

 To place the contents of a file opened with number N into the Text
property of a text box named txtExample we use the Input function:

 txtExample.Text = Input(LOF(N), N)

 This Input function has two arguments: LOF(N), the length of the
file opened as N and N, the file number.

 Example

 We have a file named MyText.ned stored on the c: drive in the
\MyFiles directory. We want to read that text file into the text
property of a text box named txtExample. The code to do this is:

 Open "c:\MyFiles\MyText.ned" For Input As #1

 txtExample.Text = Input(LOF(1), 1)

 Close 1

 The text in the file will now be displayed in the text box.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1005.%20Sequential%20Access%20Files.htm (9 of 10) [6/26/02 3:39:41 PM]

1005. Sequential Access Files

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1005.%20Sequential%20Access%20Files.htm (10 of 10) [6/26/02 3:39:41 PM]

1101. Data Environment

 Data Environment Designer

In short, it's a design-time representation of the ADO objects that
you would otherwise create at run time. When you use a form
designer, you're actually defining at design time the forms and
controls Visual Basic will create at run time. You make your choices
in a visual manner, without worrying about what Visual Basic
actually does when the program runs. Similarly, you can use the
DataEnvironment designer to define the behavior of ADO
Connections, Commands, and Recordset objects. You can set their
properties at design time by pressing the F4 key to bring up the
Properties window or by using their custom property pages, exactly
as you would do with forms and controls.

It works with any local and remote ADO connection and even
supports multiple connections. Moreover, it qualifies as an ADO data
source, so you can bind fields to it. To add a DataEnvironment
designer to the current project, you can choose the Add Data
Environment command from the Project menu.

Connection Objects

The main object in a DataEnviroment designer is the Connection
object. It broadly corresponds to the form object in the Form
designer in the sense that it's the top-level object. Unlike forms,
however, a DataEnvironment designer instance can contain multiple
Connection objects. You can create a Connection in many ways.
When you create a DataEnvironment, it already contains a default

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1101.%20Data%20Environment.htm (1 of 6) [6/26/02 3:39:47 PM]

1101. Data Environment

Connection object, so you simply need to set its properties. You do
this either by pressing F4 to display the standard Properties window,
or (better) by right-clicking on the object and selecting the
Properties menu command to display its custom property pages.
(You get the same effect by clicking on the Properties button on the
DataEnviroment toolbar.) The Provider, Connection, Advanced, and
All pages are exactly the same ones that you encountered when
setting data link's properties in the DataView window or when
creating the ConnectionString property of an ADO Data control.

The DesignUserName and DesignPassword properties let you set
the user name and password you want to use when you're creating
the DataEnvironment object, while RunUserName and RunPassword
are the user name and password you want to use when the program
is executing. For example, you might develop the application using
an Administrator identity and then check how the application
behaves at run time when a guest user logs in. You can decide
whether you want to see the prompt when the connection opens,
and you can use different settings for design time and run time. You
usually set DesignPromptBehavior to adPromptComplete and
RunPromptBehavior to adPromptNever; the latter prevents malicious
users from logging on to other data sources or entering random user
names and passwords until they manage to get into the system.

Command Objects

A Command object in the DataEnvironment designer represents an
action performed on a database. A command object is always a child
of a Connection object, in much the same way a control is always a
child of a form. More precisely, you can create a stand-alone
Command object, but you can't use it until you make it a child of a
Connection object.

Creating a Command object

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1101.%20Data%20Environment.htm (2 of 6) [6/26/02 3:39:47 PM]

1101. Data Environment

The easiest way to create a Command object is by dragging a table,
a view, or a stored procedure from the DataView window into the
DataEnvironment window. Visual Basic then creates the Command
object that corresponds to that table, view, or stored procedure, and
it also creates a parent Connection, if necessary. A Command object
can be a child only of a Connection that refers to its own database.
You can also create one or more Command objects that map to
stored procedures in a database by clicking on the Insert Stored
Procedures button on the DataEnvironment toolbar.

There are two kinds of Command objects: ones that return
Recordsets and ones that don't. The former are SQL queries, stored
procedures, tables, or views that return a Recordset (which can be
empty, if no records in the database meet the selection criteria). The
latter are SQL commands or stored procedures that insert, delete, or
modify values in the database but don't return a set of records. For
example, you can create a Command named AuthorsInCA that
returns all the authors that live in California by using the following
SQL query:

SELECT * FROM Authors WHERE State = 'CA'

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1101.%20Data%20Environment.htm (3 of 6) [6/26/02 3:39:47 PM]

1101. Data Environment

Figure : You can drag tables, views, and stored procedures from the
DataView window to the DataEnvironment designer to create
Command objects, and right-click on them to display the custom
property pages.

If you have a normal, nonparameterized and nonhierarchical
command, you can skip all the intermediate tabs and go to the
Advanced page, shown in Figure 8-20. Here you decide the cursor
type and location, the type of locking to be enforced, the size of the
local cache (that is, the number of records read from the server

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1101.%20Data%20Environment.htm (4 of 6) [6/26/02 3:39:47 PM]

1101. Data Environment

when necessary), the timeout for the command, and the maximum
number of records that the query should return. You can use this
last value to prevent a query from returning hundreds of thousands
of records and so bringing your workstation and your network to
their knees.

Figure : The Advanced tab of the Command's property pages.

Parameterized commands

Using parameters adds a lot of flexibility to Command objects. You
can create two types of parameterized Command objects: those
based on a SQL query and those based on a stored procedure with

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1101.%20Data%20Environment.htm (5 of 6) [6/26/02 3:39:47 PM]

1101. Data Environment

parameters. For the first kind, you must enter a parameterized SQL
query, using question marks as placeholders for parameters. For
example, you can create a Command object named AuthorsByState,
which corresponds to the following query:

SELECT * FROM Authors WHERE State = ?

After you've entered this query in the General tab of the Properties
dialog box, switch to the Parameters tab and check that the
DataEnvironment has correctly determined that the query embeds
one parameter. In this tab, you can assign a name to each parameter,
set its data type and size, and so on. All parameters in this type of
query are input parameters.

To create a Command object that maps a stored procedure, you can
click on the Insert Stored Procedure button and select the stored
procedure you're interested in. The DataEnvironment is usually able
to retrieve the stored procedure syntax and correctly populate the
Command's Parameters collection. You should pay attention to the
direction of the parameters because sometimes the
DataEnvironment doesn't correctly recognize output parameters and
you have to manually fix their Direction attribute. Also, double-check
that all string parameters have nonzero sizes.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1101.%20Data%20Environment.htm (6 of 6) [6/26/02 3:39:47 PM]

1102. Data Report

 Data Report

Before using the DataReport designer, you must make it accessible
from the IDE, which you do by issuing the Components command
from the Project menu, switching to the Designer tab, and ticking the
Data Report check box. Alternatively, you can create a new Data
Project and let Visual Basic create an instance of the DataReport
designer for you.

The DataReport designer works in bound mode only, in the sense
that it's able to automatically retrieve the data to be sent to the
printer or simply displayed in the preview window. It can export a
report to a text file or an HTML file and also supports custom format
layouts. The DataReport designer comes with a set of custom
controls that you can drop on its surface in the same way as you do
with forms and other designers. These controls include lines,
shapes, images, and also function fields, which you can use to
create summary fields in your reports. Another intriguing feature of
this designer is its ability to print in asynchronous mode, which lets
the user perform other tasks while the printing proceeds.

Design-Time Operations

The simplest way to create a report using the DataReport designer is
in conjunction with the DataEnvironment designer. The DataReport
designer supports drag-and-drop operations of DataEnvironment's
Command objects, including hierarchical Command objects. The
only limitation is that the report can account for just one child
Recordset at each nesting level. We'll use a hierarchical Command
object based on the Orders and Order Details tables in the
NWind.mdb database.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1102.%20Data%20Report.htm (1 of 7) [6/26/02 3:39:50 PM]

1102. Data Report

Binding to a Command object

Here are the steps you should follow to create a report based on the
sample hierarchical Command object:

 i. Create a hierarchical Command, named Orders, that
contains a child Command named Order Details. Ensure that it
retrieves the information you're interested in.

 ii. Create a new instance of the DataReport designer.

 iii. Bring up the Properties window, let the DataReport's
DataSource property point to DataEnvironment1 (or whatever
the name of your DataEnvironment is), and then set its
DataMember property to Orders.

 iv. Right-click on the Report Header of the DataReport
designer, and select the Retrieve Structure menu command; this
will create a Group Header and Group Footer section labeled
Orders_Header and Orders_Footer, respectively; between them
is a Detail section labeled Order_Details_Detail.

 v. A section represents a block of data that will be repeated
for each record in the parent Command object. The first section
corresponds to the parent Command object, the second section
to its child Command, and so on until you reach the Detail
section, which corresponds to the innermost Command object.
All the sections except the Detail section are divided into a
header section and a footer section, which are printed before
and after the information related to the sections pertaining to
objects at an inner level. The DataReport designer also includes
a Report section (which prints information at the beginning and
end of the report) and a Page section (which prints information

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1102.%20Data%20Report.htm (2 of 7) [6/26/02 3:39:50 PM]

1102. Data Report

at the beginning and end of each page). If you don't see these
two sections, right-click anywhere on the DataReport designer
and select the appropriate menu command.

 vi. Drag the fields you need from the Orders Command
object in the DataEnvironment to the Orders_Header section of
the DataReport. Whenever you release the mouse button, a pair
of controls, RptLabel and a RptTextBox, appear in the
DataReport. When the report is eventually displayed, the
RptLabel control produces a constant string with the name of
the field (or whatever you assigned to its Caption property),
while the RptTextBox control is replaced by the actual contents
of the corresponding database field. You can then arrange the
fields in the Orders_Header section and delete the RptLabel
controls that you don't want to display.

 vii. Click on the Order Details Command object and drag it
onto the DataReport; Visual Basic creates one RtpLabel-
RptTextBox control pair for each field in the corresponding
Recordset. You can then delete the OrderID field and arrange the
others in a row, as displayed in Figure given below.

viii. Adjust each section's height so that it doesn't take more
room than strictly necessary. This is especially important for the
Detail section, because it will be repeated for each single record
in the Order Detail table. You can also reduce all the sections
that don't contain any fields to a null height.

 ix. What you've done so far is sufficient to see the
DataReport in action. Bring up the Project Property Pages dialog
box, select DataReport1 as the startup object, and then run the
program. Or you can run it from any event with the use of .Show
method just like we do with standard form.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1102.%20Data%20Report.htm (3 of 7) [6/26/02 3:39:50 PM]

1102. Data Report

 x. Before moving on to another topic, a couple of notes
about the placement of controls are in order. First, you can drop
any control in the section that corresponds to the Command
object it belongs to, as well as in any section with a deeper
nesting level. For example, you can drop the OrderID field from
the Orders Command in both the Orders section and the
Order_Details section. You can't, however, move the UnitPrice
field from the inner Order_Details section to the Order section.
Second, you shouldn't drop binary fields or fields containing
images from the DataEnvironment onto the DataReport
designer; Visual Basic won't generate an error, but it will create
a RptTextBox control that contains meaningless characters at
run time.

Figure : The DataReport designer at design time, with the pop-up

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1102.%20Data%20Report.htm (4 of 7) [6/26/02 3:39:50 PM]

1102. Data Report

menu that appears when you right-click on a control.

Setting control properties

The controls you have dropped on the DataReport's surface are
similar to the standard controls you place on a form, but they belong
to a different control library. In fact, you can't drop a standard
intrinsic control on a DataReport designer, nor can you place a
control from the DataReport control library on a form or another
designer. But you can move DataReport controls and align them as
you would do with any regular control. you should already be
familiar with most of the properties you find in this window. For
example, you can change the DataFormat properties of the
txtOrderDate and txtShippedDate controls so that they display their
values in long date format. Or you can change the txtOrderID
control's BackStyle property to 1-rptBkOpaque and its BackColor
property to gray (&HE0E0E0) so that order identifiers are highlighted
in the report. RptLabel controls don't expose any Dataxxxx property;
they're just cosmetic controls that insert fixed strings in the report.
The only custom property that we haven't seen yet is CanGrow,
which applies to both the RptLabel and RptTextBox controls. If this
property is True, the control is allowed to expand vertically when its
content exceeds the control's width. The default value for this
property is False, which causes longer strings to be truncated to the
control's width.

Displaying calculated fields

The first way, which is suitable for calculated values that depend on
other values in the same record, requires that you modify the
SELECT command to include the calculated field in the list of fields
to be retrieved.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1102.%20Data%20Report.htm (5 of 7) [6/26/02 3:39:50 PM]

1102. Data Report

SELECT OrderID, ProductID, UnitPrice, Quantity, Discount,
((UnitPrice*Quantity)*(1-Discount)) AS Total FROM
Order_Details

Then you might add a Total field in the Detail section that lists the
total price for each record from the Order Details table. Remember to
align the field to the right and allow for the correct number of digits
after the decimal point.

The second technique for adding a calculated field is based on
RptFunction controls and is suitable for summary fields. For
example, let's add a field that evaluates the total value of each order.
This requires calculating the sum of the values of the Total field in
the Order_Details Command. To do this, you must drop a
RptFunction control into the Orders_Footer section—that is, the first
footer after the section where the data to be summed is displayed.
Then set the new control's DataMember property to Order_Details,
its DataField property to Total, its FunctionType to 0rptFuncSum,
and its DataFormat property to Currency. Using the same approach,
you can add a summary field with the total number of distinct
products in the order, by setting DataField to ProductID and
FunctionType to 4-rptFuncRCnt.

You're not forced to place a RptFunction control in the footer section
that immediately follows the section where the data field is. For
example, to evaluate the sum of the Total fields from the
Order_Details Command, you can add a RptFunction control in the
Report Footer section, and you can add another RptFunction control
to calculate the sum of the Freight fields from the Orders section. In
any case, you only have to set these controls' DataMember
properties to point to the correct Command object. Unfortunately,

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1102.%20Data%20Report.htm (6 of 7) [6/26/02 3:39:50 PM]

1102. Data Report

you can't place a RptFunction control in a Page Footer section, so
you can't have totals at the end of each page.

It is easy to generate report that groups records. For example, to
display a list of customers grouped by country, all you have to do is
create a Command object linked to the Customers table, switch to
the Grouping tab of its Property Pages dialog box, and group the
Command object by its Country field. This operation creates a new
Command object with two folders. You can then assign this
Command to the DataMember property of a DataReport designer and
issue the Retrieve Structure command to let the designer
automatically create the necessary sections. The sample application
on the companion CD includes a report built using this technique.

Managing page footers and page breaks

You can place controls in a Page Header or Page Footer section,
typically to display information about the current page number, the
total number of pages, the date and time of the report, and so forth.
To do this, right-click in the section of interest, select the Insert
Control menu command, and then from a pop-up menu select the
information you want to display. A control created in this way is a
RptLabel, which contains special characters in its Caption property.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1102.%20Data%20Report.htm (7 of 7) [6/26/02 3:39:50 PM]

1104. Graphs

 Graphs with (MS Chart Control)

The MSChart control is an external ActiveX control that lets you add
charting capabilities to your applications. You can create two- and
three-dimensional charts in different styles, including bars, lines,
and pies. You have complete control over all the items in the chart,
such as title, legends, footnotes, axes, data point series, and so on.
You can even rotate the graph, add backdrop images to virtually any
element of the chart, set up your own light sources, and place them
where you want. At run time, users can select portions of the chart
and move and resize them at will, if you want to provide them with
this capability. Sample of chart control on the form is shown below
figure

Setting Design-Time Properties

The MSChart control property pages dialog box is shown in Figure

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1104.%20Graphs.htm (1 of 5) [6/26/02 3:39:52 PM]

1104. Graphs

The Chart tab is where you decide which type of graphic you want to
display, whether you want to stack series, and whether you show
legends that explain what each data series is. These settings
correspond to the ChartType, Chart3d, Stacking, and ShowLegend
properties of the MSChart object.

The Axis tab is where you select the attributes of the axis of the
chart: line width and color, whether the scale is displayed, and
whether the scale is determined automatically by the control (the
recommended setting) or manually by the programmer. In the latter
case, you have to set minimum and maximum values and the
frequency of divisions. Two-dimensional charts have three axes (x-
axis, y-axis, and secondary y-axis), while three-dimensional charts
have an additional fourth axis (z-axis). Your code can modify these
properties using the Axis object, a child of the Plot object.

The AxisGrid tab lets you modify the style lines of axis grids; these
settings correspond to the properties of the AxisGrid object, a child

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1104.%20Graphs.htm (2 of 5) [6/26/02 3:39:52 PM]

1104. Graphs

of the Axis object.

In the Series tab, you define how each data series should be
displayed. You can hide a series (but reserve the space for it on the
chart), exclude it (this also reuses its space on the chart), show its
markers, and draw it on the secondary y-axis. If you are drawing a
two-dimensional Line chart, you can also display statistical data,
such as minimum and maximum values, mean, standard deviation,
and regression. You can modify these features through code by
acting on the SeriesCollection and the Series objects.

You refine the appearance of each data series in the SeriesColor tab,
where you select the color and the style of the edge and the interior
of each series. (The latter isn't available for Line and X-Y charts.)
Your code can manipulate these properties through the DataPoint
object.

All the main objects in the control—MsChart, Plot, Title, Legend, and
Footnote—can have a backdrop pattern. You define the color and
style of each backdrop in the Backdrop tab of the Property Pages
window. The title, the legends, and the axis in your graph expose a
Title, and you can set its properties in the Text and the Font tabs.

Run-Time Operations

Unless you want to give users the ability to modify some key
properties of your charts, you can define all the key properties at
design time using the Property Pages dialog box so that at run time
you only have to feed the MSChart control the actual data to be
displayed. You achieve this using the DataGrid object.

You can think of the DataGrid object as a multidimensional array that

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1104.%20Graphs.htm (3 of 5) [6/26/02 3:39:52 PM]

1104. Graphs

holds both data and its associated labels. You define the size of the
array by assigning a value to the DataGrid's RowCount and
ColumnCount properties, and you define the number of labels with
the RowLabelCount and ColumnLabelCount properties. For example,
you might have 12 rows of data to which you add a label at every
third data point:

' 12 rows of data, with a label every third row

MSChart1.DataGrid.RowCount = 12

MSChart1.DataGrid.RowLabelCount = 4

' 10 columns of data, with a label on the 1st and 6th column

MSChart1.DataGrid.ColumnCount = 10

MSChart1.DataGrid.ColumnLabelCount = 2

Alternatively, you can set these four properties in one operation using the
SetSize method:

' Syntax is: SetSize RowLabelCount, ColLabelCount,
RowCount, ColCount

MSChart1.DataGrid.SetSize 4, 2, 12, 10

You define the label text using the RowLabel and ColumnLabel
properties, which accept two arguments: the row or column number
and the number of the label you want to assign.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1104.%20Graphs.htm (4 of 5) [6/26/02 3:39:52 PM]

1104. Graphs

' Set a label every three years.

MSChart1.DataGrid.RowLabel(1, 1) = "1988"

MSChart1.DataGrid.RowLabel(4, 2) = "1991"

MSChart1.DataGrid.RowLabel(7, 3) = "1994"

' And so on.

You can set the value of individual data points using the SetData
method, which has the following syntax:

MSChart.DataGrid.SetData Row, Column, Value, NullFlag

where Value is a Double value and NullFlag is True if the data is Null.
You can easily (and quickly) insert or delete rows or columns using
a number of methods exposed by the DataGrid object. Among these
are InsertRows, DeleteRows, InsertColumns, DeleteColumns,
InsertRowLabels, DeleteRowLabels, InsertColumnLabels, and
DeleteColumnLabels. You can also fill the grid with random values
(useful for providing the user with visual feedback even without
actual data values) with the method RandomDataFill.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1104.%20Graphs.htm (5 of 5) [6/26/02 3:39:52 PM]

1201. Win API - An Overview

 Win API - An Overview

The Windows operating system is heavily based on messages. For
example, when the user closes a window, the operating system
sends the window a WM_CLOSE message. When the user types a
key, the window that has the focus receives a WM_CHAR message,
and so on. (In this context, the term window refers to both top-level
windows and child controls.) Messages can also be sent to a window
or a control to affect its appearance or behavior or to retrieve the
information it contains. For example, you can send the
WM_SETTEXT message to most windows and controls to assign a
string to their contents, and you can send the WM_GETTEXT
message to read their current contents. By means of these
messages you can set or read the caption of a top-level window or
set or read the Text property of a TextBox control, just to name a few
common uses for this technique.

Broadly speaking, messages belong to one of two families: They're
control messages or notification messages. Control messages are
sent by an application to a window or a control to set or retrieve its
contents, or modify its behavior or appearance . Notification
messages are sent by the operating system to windows or controls
as the result of the actions users perform on them.

Visual Basic greatly simplifies the programming of Windows
applications because it automatically translates most of these
messages into properties, methods, and events. Instead of using

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1201.%20Win%20API%20-%20An%20Overview.htm (1 of 5) [6/26/02 3:39:57 PM]

1201. Win API - An Overview

WM_SETTEXT and WM_GETTEXT messages, Visual Basic
programmers can reason in terms of Caption and Text properties.
Nor do they have to worry about trapping WM_CLOSE messages
sent to a form because the Visual Basic runtime automatically
translate them into Form_Unload events. More generally, control
messages map to properties and methods, whereas notification
messages map to events.

Not all messages are processed in this way, though. For example,
the TextBox control has built-in undo capabilities, but they aren't
exposed as properties or methods by Visual Basic and therefore
they can't be accessed by "pure" Visual Basic code. (In this chapter,
pure Visual Basic means code that doesn't rely on external API
functions.) Here's another example: When the user moves a form,
Windows sends the form a WM_MOVE message, but the Visual Basic
runtime traps that message without raising an event. If your
application needs to know when one of its windows moves, you're
out of luck.

By using API functions, you can work around these limitations. In
this section, I' show you how you can send a control message to a
window or a control to affect its appearance or behavior, while in the
"Callback and Subclassing" section of this chapter, I' illustrate a
more complex programming technique, called window subclassing,
which lets you intercept the notification messages that Visual Basic
doesn't translate to events.

Before you can use an API function, you must tell Visual Basic the
name of the DLL that contains it and the type of each argument. You
do this with a Declare statement, which must appear in the
declaration section of a module. Declare statements must be
declared as Private in all types of modules except BAS modules
(which also accept Public Declare statements that are visible from
the entire application). For additional information about the Declare

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1201.%20Win%20API%20-%20An%20Overview.htm (2 of 5) [6/26/02 3:39:57 PM]

1201. Win API - An Overview

statement, see the language documentation.

The main API function that you can use to send a message to a form
or a control is SendMessage, whose Declare statement is this:

Private Declare Function SendMessage Lib "user32" Alias
"SendMessageA" _

 (ByVal hWnd As Long, ByVal wMsg As Long, _

 ByVal wParam As Long, lParam As Any) As Long

The hWnd argument is the handle of the window to which you're
sending the message (it corresponds to the window's hWnd
property), wMsg is the message number (usually expressed as a
symbolic constant), and the meaning of the wParam and lParam
values depend on the particular message you're sending. Notice that
lParam is declared with the As Any clause so that you can pass
virtually anything to this argument, including any simple data type or
a UDT. To reduce the risk of accidentally sending invalid data, I've
prepared a version of the SendMessage function, which accepts a
Long number by value, and another version that expects a String
passed by value. These are the so called type-safe Declare
statements:

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1201.%20Win%20API%20-%20An%20Overview.htm (3 of 5) [6/26/02 3:39:57 PM]

1201. Win API - An Overview

Private Declare Function SendMessageByVal Lib "user32" _

 Alias "SendMessageA" (ByVal hWnd As Long, ByVal wMsg As Long, _

 ByVal wParam As Long, Byval lParam As Long) As Long

Private Declare Function SendMessageString Lib "user32" _

 Alias "SendMessageA" ByVal hWnd As Long, ByVal wMsg As Long, _

 ByVal wParam As Long, ByVal lParam As String) As Long

Apart from such type-safe variants, the Declare functions used in
this chapter, as well as the values of message symbolic constants,
can be obtained by running the API Viewer utility that comes with
Visual Basic.

CAUTION

 When working with API functions, you're in direct touch with the
operating system and aren't using the safety net that Visual Basic
offers. If you make an error in the declaration or execution of an API
function, you're likely to get a General Protection Fault (GPF) or
another fatal error that will immediately shut down the Visual Basic
environment. For this reason, you should carefully double-check the
Declare statements and the arguments you pass to an API function,
and you should always save your code before running the project.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1201.%20Win%20API%20-%20An%20Overview.htm (4 of 5) [6/26/02 3:39:57 PM]

1201. Win API - An Overview

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1201.%20Win%20API%20-%20An%20Overview.htm (5 of 5) [6/26/02 3:39:57 PM]

1202. OLE

 OLE

Introduction

An impottant festure of Microsoft Wndows Operating system is its
ability for applications to share information. OLE is a means of
communication, which gives applications the power to directly use
and manipulate other windows applications.OLE is an important
Windows topic in Visual Basic. Any object that supports OLE can be
linked.OLE specification permits the user to link and embed objects,
and also edit the object with in the container application. This
chapter cover the basics of using other applications' objects in
Visual Basic, featuring the OLE container control and OLE
automation.

OLE Basics

DDE is an acronym for Dynamic Data Exchange.It is the basic
foundation for inter process communication between applications.In
DDE, the application creating a link is known as the destination
application, and the application that responds is the source
application.Although there are functional similarities between OLE
and DDE there are some differences. Using DDE, unformatted data is
exchanged. The Visual basic application has to format it
appropriately. For e.g in case of an Excel Spreadsheet, the formula
calculating the result is not fetched, but only the resultant number is
fetched.

OLE is an abbreviation for Object Linking and Embedding.OLE

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1202.%20OLE.htm (1 of 7) [6/26/02 3:39:59 PM]

1202. OLE

actually transfers control to the original application.Object linking
and embedding(OLE) is a technology that enables the programmer
of a windows-based application to create an application that can
display data from many different applications and enables the user
to edit that data from within the application in which it was
created.When a spreadsheet is edited in Visual Basic program,
actually the original application is called.OLE contains the correct
underlying objects so the information is fully ediatble.In some cases,
the user can even edit the data from within the Visual Basic
application.The following terms and concepts are the fundamentals
for understanding the methodology to use OLE in Visual Basic.

OLE Automation

Some application provide objects that support OLE Automation. We can
use Visual Basic to programatically manipulate the data in these objects.
Some objects that support OLE Automation also support linking and
embedding. If an object in an OLEcontainer control supports OLE
Automation, we can access its properties and methods using the object
property.

Objects Linked

Data associated with a linked object is stored by the application that
supplied the object.The application only stores link refrences that display
a snapshot of the source data. When we link an object, any application
containing a link to that object can access the object's data and change it.
For example, if we link a text file to a Visual Basic application, the text file
can be modified by the application linked to it. The modified version
appears in all documents linked to this text file. We can use the OLE
container control to create a linked object in our Visual Basic application.

Objects Embedded

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1202.%20OLE.htm (2 of 7) [6/26/02 3:39:59 PM]

1202. OLE

When an embedded object is created, all the data associated with the
object is contained in the object.For example, if a spreadsheet is an
embedded object, all the data associated with the cells would be
contained in the OLE container control or insertable object, including any
necesary formulate.The name of the application that created the object is
saved along with the data.If we select the embedded object while working
with the Visual Basic application, the spreadsheet application can be
started automatically so that we can edit those cells. When an object is
embedded in an application, no other application has access to the data in
the embedded object.We can use embedded objects when we want only
the application to maintain data that is produced and edited in another
application.

Meaning and Use of OLE container Control

An application that receices and displays an objct's data is a container
application.

The OLe container control allows adding from the other application.An
OLE control can have only one object at a time.Using OLE control we can

Advantages of OLE control:

• Create a placeholder in our application for an object

• Create a linked object in our application

• Bind the OLE container control to a database.

• Create objects from data that was copied onto the clipboard.

• Display objects as icons.

• Perform an action if the user moves,sizes or updates the objects
in the OLE control.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1202.%20OLE.htm (3 of 7) [6/26/02 3:39:59 PM]

1202. OLE

• Provide backward if the user moves,sizes or updates the objects
in the OLE control.

Creating Linked objects at Design Time

Each time an OLE control is drawn on a Form,an Insert Object dialogue
box appears as shown in below figure which presents a list of the
available objects that can be linked to or embedded in the
appliucations.When an object is inserted into the OLE control at design
time, the class,SourceDoc and SourceItem properites that identify the
application that supplies the object, the source filename and any specific
file that is linked from within that file are automatically set.The following
example creates a linked object using Insert Object dialogue box:

• The following example creates link from an existing application.

• Drag an OLE control on the form.The Insert object dialogue box is
appeared.

• Click on the create from file option is clicked and the Browse
button is chosen.A Browse dialogue box appears.

• Select the desired file from the directory and Click on OK Button.
The Insert object dialogue box is displayed.

• To Link the object Click on Link Check Box and Click on OK
button

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1202.%20OLE.htm (4 of 7) [6/26/02 3:39:59 PM]

1202. OLE

When a linked object is created, the data displayed in the OLE control
exists in one place which is the source file. The file can be edited in its
original applications and saved.The object's data can be accessed from
any of the other application that contain links to that data, and the data in
the source file can be changed from within any application.

Creating embedded object at design time

The following are the steps of creating embedded object

• Draw an OLE control on the Form.

• Insert object dialogue box is appeared.

• Click on Create from File Option.And Click on browse Option.

• The desired file is selected from the directory and click on OK
button.

• Click on Ok button after chossing the OK button.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1202.%20OLE.htm (5 of 7) [6/26/02 3:39:59 PM]

1202. OLE

When an embedded object is created, we can either embed data from a
file or create a new empty object that can be filled later with data.When
data is embedded from a file, a copy of the specified file's data is
displayed in the OLE container control.When a new object is created, the
application that created the object is invoked and data can be entered into
the object.

The following Examples shows the how new file is created using OLE
container:

To Create Objects by Paste Special Dialogue Box

Paste special Dialogue box can be used to create an object during design
time.This dialogue box is useful if only a portion of a file is to be used.For
e.g a paragraph from a word document, or a range of cells from an Excel
Spreadsheet.

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1202.%20OLE.htm (6 of 7) [6/26/02 3:39:59 PM]

1202. OLE

Creating Objects at Run Time

To create a linked or embedded object at run time, various methods and
properties are used in the code.We can create a linked object at run time
using the SourceDoc property and Create Link method.The following code
fragment creates linked object at run time.

Example:

OLE1.CreateLink " C:\OLE.xls"

Empty Embedded Object Creation at run time

The CreateEmbed method can be used to specify an empty embedded
object at run time.The following code fragment inserts a file for a Micorsoft
Excel Worksheet in the OLE container control.

OLE1.CreateEmbed " " , "Excel.sheet"

file:///D|/JigneshDhol/VisualBasic/VB%20Tutorials/1202.%20OLE.htm (7 of 7) [6/26/02 3:39:59 PM]

	Visual Basic 6.0
	Welcome
	Contents
	Ch:1 Introduction to VB
	Index
	Features of Visual Basic
	Concept of event-driven programming
	Difference between design time and run time
	List the file types that can be included in a project

	Ch:2 VB Fundamentals
	Index
	Data Types
	Variables and Scope of Variables
	VB Constants
	Statements
	Loops
	Operators

	Ch:3 Working with Forms
	Index
	Common Properties
	Common Methods
	Common Events
	Form Methods
	Form Events
	Form Properties

	Ch:4 Working with Controls
	Index
	Introduction
	Label and Text Box
	Picture Box and Image
	Command Button
	Check Box, Option Button and Frame
	Combo Box and List Box
	Scroll Bars
	Timer
	Drive, Dir and File List Box
	Shape and Line

	Ch:5 Dialog Boxes and Menu Editor
	Index
	Introduction
	Predefined Dialog Box
	Customized dialog boxes
	Standard dialog boxes
	Menu Editor
	Pop up menu
	MDI Application

	Ch:6 Functions
	Index
	Date
	Math
	String
	Information
	Collection
	Conversion
	Graphics with VB

	Ch:7 Database Objects: ADO, DAO
	Index
	ADO Collection
	ADO Example
	DAO Collection
	DAO Example

	Ch:8 Error Handling
	Index
	Types of Errors
	Syntex Error
	Logical Error
	Run Time Error
	Err Object
	Error Trapping Options in VB

	Ch:9 Advance ActiveX Controls
	Index
	Image List
	Tree View
	List View
	Flex Grid
	Rich Text Box
	Status Bar
	Progress Bar
	Tool Bar
	Slider Control
	Date Picker
	Tabbed Control
	Masked Edit Control

	Ch:10 File Handling
	Index
	Accessing File - An Overview
	Random Access Files
	Sequential Access Files

	Ch:11 Report Designer and Graphs
	Index
	Data Environment
	Data Report
	Graphs

	Ch:12 Win API
	Index
	Win API - An Overview
	OLE

